Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs.

IF 4 2区 生物学 Q2 MICROBIOLOGY BMC Microbiology Pub Date : 2025-01-30 DOI:10.1186/s12866-025-03760-8
Jiao Feng, Changxin Wu, Dongsheng Zhou, Lingfei Hu, Kai Mu, Zhe Yin
{"title":"Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs.","authors":"Jiao Feng, Changxin Wu, Dongsheng Zhou, Lingfei Hu, Kai Mu, Zhe Yin","doi":"10.1186/s12866-025-03760-8","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank. These 29 plasmids were classified into five distinct groups: IncFII single-replicon plasmids, dual-replicon plasmids containing the IncFII replicon, IncHI plasmids, IncR plasmids, and IncX8 plasmids. A new incompatible group, IncFII<sub>p23141-CTXM</sub>, was identified, alongside five newly designated Inc groups based on previously determined sequences, namely IncFII<sub>pKPC2_EC14653</sub>, IncFII<sub>pCP020359</sub>, IncFII<sub>pCP024509</sub>, IncFII<sub>pKOX-137</sub>, and IncFII<sub>pKDO1</sub>. Furthermore, this research marks the first report of four Inc groups of plasmids within Raoultella, namely IncFII<sub>p23141-CTXM</sub> plasmid, IncFII<sub>pKPC2_EC14653</sub> plasmid, IncX8 plasmid, and IncFII<sub>pCP020359</sub>: IncFIB-7.1 dual-replicon plasmid. Moreover, novel mobile genetic elements, including two unit transposons (Tn6806 and Tn6891), one IS-based transposition unit (Tn6561), and four insertion sequences (ISRor6, ISRor7, ISRor8, and ISRor9) were discovered. Notably, this is the first report of mcr-9 in clinical Raoultella strains. At least 49 ARGs conferring resistance against 11 different categories of antimicrobials were identified on these 13 plasmids. Overall, this research deepens the understanding of incompatible plasmids in Raoultella, serving as a reference for exploring antibiotic resistance profiles and plasmid diversity in MDR Raoultella.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"55"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03760-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of multidrug-resistant (MDR) Raoultella isolates is linked to the acquisition of antibiotic resistance genes (ARGs) with plasmids playing a pivotal role in this process. While plasmid-mediated transmission of ARGs in Raoultella has been extensively reported, limited attention has been given to genetically dissecting the modular structures of plasmids. This study aims to elucidate the genomic features of novel incompatible plasmids in MDR Raoultella by presenting 13 complete plasmid sequences from four isolates, along with an analysis of 16 related plasmids from GenBank. These 29 plasmids were classified into five distinct groups: IncFII single-replicon plasmids, dual-replicon plasmids containing the IncFII replicon, IncHI plasmids, IncR plasmids, and IncX8 plasmids. A new incompatible group, IncFIIp23141-CTXM, was identified, alongside five newly designated Inc groups based on previously determined sequences, namely IncFIIpKPC2_EC14653, IncFIIpCP020359, IncFIIpCP024509, IncFIIpKOX-137, and IncFIIpKDO1. Furthermore, this research marks the first report of four Inc groups of plasmids within Raoultella, namely IncFIIp23141-CTXM plasmid, IncFIIpKPC2_EC14653 plasmid, IncX8 plasmid, and IncFIIpCP020359: IncFIB-7.1 dual-replicon plasmid. Moreover, novel mobile genetic elements, including two unit transposons (Tn6806 and Tn6891), one IS-based transposition unit (Tn6561), and four insertion sequences (ISRor6, ISRor7, ISRor8, and ISRor9) were discovered. Notably, this is the first report of mcr-9 in clinical Raoultella strains. At least 49 ARGs conferring resistance against 11 different categories of antimicrobials were identified on these 13 plasmids. Overall, this research deepens the understanding of incompatible plasmids in Raoultella, serving as a reference for exploring antibiotic resistance profiles and plasmid diversity in MDR Raoultella.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
期刊最新文献
Insights into incompatible plasmids in multidrug-resistant Raoultella superbugs. 6-thioguanine inhibits EV71 replication by reducing BIRC3-mediated autophagy. Sustainable utilization of bovine adipose tissue derivatives as robust antimicrobial agents against Methicillin-resistant Staphylococcus aureus. Changes in incidence and epidemiology of antimicrobial resistant pathogens before and during the COVID-19 pandemic in Germany, 2015-2022. Comprehensive analysis of vaginal microbiota in Chinese women with genital tuberculosis: implications for diagnosis and treatment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1