In-Situ Monitoring of Dissolution and Crystallization Processes of Carbamazepine Using Low-Frequency Raman Spectroscopy and Multivariate Analysis.

IF 1.5 4区 医学 Q4 CHEMISTRY, MEDICINAL Chemical & pharmaceutical bulletin Pub Date : 2025-01-01 DOI:10.1248/cpb.c24-00745
Takayuki Kudo, Haruka Uchida, Mana Yamato, Ryo Ohashi, Vasanthi Palanisamy, Toshiro Fukami
{"title":"In-Situ Monitoring of Dissolution and Crystallization Processes of Carbamazepine Using Low-Frequency Raman Spectroscopy and Multivariate Analysis.","authors":"Takayuki Kudo, Haruka Uchida, Mana Yamato, Ryo Ohashi, Vasanthi Palanisamy, Toshiro Fukami","doi":"10.1248/cpb.c24-00745","DOIUrl":null,"url":null,"abstract":"<p><p>Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly. In this study, we attempted to monitor the crystal polymorphs of carbamazepine (CBZ I and CBZ III) during the dissolution and crystallization processes using low-frequency Raman spectroscopy, which can reflect differences in lattice vibrations originating from polymorphs in the scattering peaks. Furthermore, using multivariate analysis of the obtained spectra, we attempted to develop a model that enables the quantification of each polymorph. A partial least squares was performed to build the prediction model. The prediction model was built using a set of 33 calibration samples, and an external set of 12 validation samples was used to evaluate the model. The model presents a good prediction capacity. The quantitative results for the solid amount of carbamazepine in suspension calculated using the model during the dissolution and crystallization process showed results that correlated very well with the particle view results. It is suggested that low-frequency Raman spectroscopy can be used as a useful process analytical technology tool.</p>","PeriodicalId":9773,"journal":{"name":"Chemical & pharmaceutical bulletin","volume":"73 1","pages":"58-62"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/cpb.c24-00745","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optimization of the manufacturing process based on scientific evidence is essential for quality control of active pharmaceutical ingredients. Real-time monitoring can ensure the production of stable quality crystals in the crystallization process. Raman spectroscopy is an attractive tool for pharmaceutical quality evaluation and process analytical technology because of its ability to analyze samples non-destructively and rapidly. In this study, we attempted to monitor the crystal polymorphs of carbamazepine (CBZ I and CBZ III) during the dissolution and crystallization processes using low-frequency Raman spectroscopy, which can reflect differences in lattice vibrations originating from polymorphs in the scattering peaks. Furthermore, using multivariate analysis of the obtained spectra, we attempted to develop a model that enables the quantification of each polymorph. A partial least squares was performed to build the prediction model. The prediction model was built using a set of 33 calibration samples, and an external set of 12 validation samples was used to evaluate the model. The model presents a good prediction capacity. The quantitative results for the solid amount of carbamazepine in suspension calculated using the model during the dissolution and crystallization process showed results that correlated very well with the particle view results. It is suggested that low-frequency Raman spectroscopy can be used as a useful process analytical technology tool.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
132
审稿时长
1.7 months
期刊介绍: The CPB covers various chemical topics in the pharmaceutical and health sciences fields dealing with biologically active compounds, natural products, and medicines, while BPB deals with a wide range of biological topics in the pharmaceutical and health sciences fields including scientific research from basic to clinical studies. For details of their respective scopes, please refer to the submission topic categories below. Topics: Organic chemistry In silico science Inorganic chemistry Pharmacognosy Health statistics Forensic science Biochemistry Pharmacology Pharmaceutical care and science Medicinal chemistry Analytical chemistry Physical pharmacy Natural product chemistry Toxicology Environmental science Molecular and cellular biology Biopharmacy and pharmacokinetics Pharmaceutical education Chemical biology Physical chemistry Pharmaceutical engineering Epidemiology Hygiene Regulatory science Immunology and microbiology Clinical pharmacy Miscellaneous.
期刊最新文献
Synthetic Studies on Vitamin D Derivatives with Diverse but Selective Biological Activities. Comparative Analysis of Needleless and Needle-Based Electrospinning Methods for Polyamide 6: A Technical Note. Synthesis and Structure-Activity Relationships of Novel Benzofuran Derivatives with Osteoblast Differentiation-Promoting Activity. Preparation of a Stable Indomethacin Supersaturated Solution Using Hydrophobically Modified Hydroxypropylmethylcellulose and α-Cyclodextrin. Toward the Synthesis of Strychnos Alkaloids: Effective Construction of Fused Cyclohexane and Pyrrolidine Portion of the Strychnos Skeleton via Domino Intermolecular and Intramolecular SN2 Cyclization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1