Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats.

IF 2.1 4区 医学 Q3 CHEMISTRY, MULTIDISCIPLINARY Drug and Chemical Toxicology Pub Date : 2025-01-30 DOI:10.1080/01480545.2025.2457386
Bahtinur Yeter, Zeynep Suleyman, Seval Bulut, Betul Cicek, Taha Abdulkadir Coban, Ozlem Demir, Halis Suleyman
{"title":"Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats.","authors":"Bahtinur Yeter, Zeynep Suleyman, Seval Bulut, Betul Cicek, Taha Abdulkadir Coban, Ozlem Demir, Halis Suleyman","doi":"10.1080/01480545.2025.2457386","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally. One hour from, ATP and distilled water administration, methylphenidate 10 mg/kg bw/d was applied <i>via</i> oral gavage to the AMPG and MPHG groups once daily for 30 d (1 × 1). Animals were euthanized after 30 d and tissues were collected. The levels of certain oxidant/antioxidant parameters, pro-inflammatory cytokines, and Blood urea nitrogen (BUN) and creatinine levels were measured. Kidneys were also examined histopathologically. ATP inhibited the increase in oxidant and decrease antioxidant levels induced by methylphenidate. The amounts of pro-inflammatory cytokines were increased in methylphenidate-treated kidney tissue compared with the HG and AMPG groups. However, ATP increased oxidative damage markers and cytokines levels close to the healthy group. Serum BUN and creatinine levels increased with methylphenidate but ATP prevented BUN and creatinine from rising in the ATPG and MPHG groups. ATP also reduced the histopathological damage increased by methylphenidate. The potential efficacy of ATP in treating kidney damage induced by methylphenidate use.</p>","PeriodicalId":11333,"journal":{"name":"Drug and Chemical Toxicology","volume":" ","pages":"1-9"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug and Chemical Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01480545.2025.2457386","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this trial was to assess the effects of methylphenidate on the kidney tissues and to investigate the protective effect of adenosine triphosphate (ATP) against possible methylphenidate nephrotoxicity in rats. The rats were separated into; healthy control (HG), methylphenidate (MPHG), ATP (ATPG), and ATP+ methylphenidate (AMPG). The ATPG and AMPG groups were administered ATP 4 mg/kg bw/d, and the HG and MPHG groups received distilled water intraperitoneally. One hour from, ATP and distilled water administration, methylphenidate 10 mg/kg bw/d was applied via oral gavage to the AMPG and MPHG groups once daily for 30 d (1 × 1). Animals were euthanized after 30 d and tissues were collected. The levels of certain oxidant/antioxidant parameters, pro-inflammatory cytokines, and Blood urea nitrogen (BUN) and creatinine levels were measured. Kidneys were also examined histopathologically. ATP inhibited the increase in oxidant and decrease antioxidant levels induced by methylphenidate. The amounts of pro-inflammatory cytokines were increased in methylphenidate-treated kidney tissue compared with the HG and AMPG groups. However, ATP increased oxidative damage markers and cytokines levels close to the healthy group. Serum BUN and creatinine levels increased with methylphenidate but ATP prevented BUN and creatinine from rising in the ATPG and MPHG groups. ATP also reduced the histopathological damage increased by methylphenidate. The potential efficacy of ATP in treating kidney damage induced by methylphenidate use.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Drug and Chemical Toxicology
Drug and Chemical Toxicology 医学-毒理学
CiteScore
6.00
自引率
3.80%
发文量
99
审稿时长
3 months
期刊介绍: Drug and Chemical Toxicology publishes full-length research papers, review articles and short communications that encompass a broad spectrum of toxicological data surrounding risk assessment and harmful exposure. Manuscripts are considered according to their relevance to the journal. Topics include both descriptive and mechanics research that illustrates the risk assessment implications of exposure to toxic agents. Examples of suitable topics include toxicological studies, which are structural examinations on the effects of dose, metabolism, and statistical or mechanism-based approaches to risk assessment. New findings and methods, along with safety evaluations, are also acceptable. Special issues may be reserved to publish symposium summaries, reviews in toxicology, and overviews of the practical interpretation and application of toxicological data.
期刊最新文献
Effect of adenosine triphosphate on methylphenidate-induced oxidative and inflammatory kidney damage in rats. Pre-clinical acute oral toxicity and subacute neurotoxicity risk assessments on sprague dawley rats treated with single dose or repeated doses of flavonoid-enriched fraction extracted from Oroxylum indicum leaves. In silico molecular docking and in vitro analysis of atomoxetine. Humic acid attenuates cisplatin-induced nephrotoxicity in rats. Novel chlorinated oxime K870 protects rats against paraoxon poisoning better than obidoxime.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1