Effect of UV exposure on DNA deposited on drug capsules.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL Forensic science international Pub Date : 2025-01-23 DOI:10.1016/j.forsciint.2025.112383
Madison Nolan, Adrian Linacre
{"title":"Effect of UV exposure on DNA deposited on drug capsules.","authors":"Madison Nolan, Adrian Linacre","doi":"10.1016/j.forsciint.2025.112383","DOIUrl":null,"url":null,"abstract":"<p><p>Illicit drugs are often made in less-than-sterile environments and can be stored in ways which can be detrimental to any DNA present, such as whether they are exposed to UV radiation. Previously, analysis of how exposure to UV impacted DNA for forensic applications has been in controlled laboratory conditions isolating a single component of UV radiation and often on DNA-rich samples such as bloodstains or saliva. To evaluate DNA persistence in more realistic conditions, capsules, such as those used to distribute controlled substances, were manually made and then packed into ziplock bags. The persistence of DNA deposited on capsules was examined when left indoors in either, complete darkness, direct sunlight in high UV conditions (summer) or in low UV conditions (winter) for three weeks in ambient room temperature. The DNA yield, STR DNA profile quality and degradation index were all analysed to determine the impact of varied UV exposure on DNA in a semi-temperature-controlled environment. Capsule samples exposed to high UV conditions had significantly reduced DNA yields, a lower number of alleles from the capsule handler and, thus, reduced likelihood ratios compared to capsules exposed to darkness and low UV conditions. Samples exposed to either darkness or low UV had little-to-no differences in all DNA quality measures tested. Despite a decreased DNA yield and poorer quality DNA profiles, capsules left in high UV conditions for three weeks have sufficient DNA for DNA profiles with over half the genetic information present. The storage conditions of drug capsules, either before or after seizure by law enforcement, can impact the DNA persistence in as little as three weeks, which is problematic for often already low concentrations of DNA in trace samples.</p>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"367 ","pages":"112383"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.forsciint.2025.112383","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Illicit drugs are often made in less-than-sterile environments and can be stored in ways which can be detrimental to any DNA present, such as whether they are exposed to UV radiation. Previously, analysis of how exposure to UV impacted DNA for forensic applications has been in controlled laboratory conditions isolating a single component of UV radiation and often on DNA-rich samples such as bloodstains or saliva. To evaluate DNA persistence in more realistic conditions, capsules, such as those used to distribute controlled substances, were manually made and then packed into ziplock bags. The persistence of DNA deposited on capsules was examined when left indoors in either, complete darkness, direct sunlight in high UV conditions (summer) or in low UV conditions (winter) for three weeks in ambient room temperature. The DNA yield, STR DNA profile quality and degradation index were all analysed to determine the impact of varied UV exposure on DNA in a semi-temperature-controlled environment. Capsule samples exposed to high UV conditions had significantly reduced DNA yields, a lower number of alleles from the capsule handler and, thus, reduced likelihood ratios compared to capsules exposed to darkness and low UV conditions. Samples exposed to either darkness or low UV had little-to-no differences in all DNA quality measures tested. Despite a decreased DNA yield and poorer quality DNA profiles, capsules left in high UV conditions for three weeks have sufficient DNA for DNA profiles with over half the genetic information present. The storage conditions of drug capsules, either before or after seizure by law enforcement, can impact the DNA persistence in as little as three weeks, which is problematic for often already low concentrations of DNA in trace samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Forensic science international
Forensic science international 医学-医学:法
CiteScore
5.00
自引率
9.10%
发文量
285
审稿时长
49 days
期刊介绍: Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law. The journal publishes: Case Reports Commentaries Letters to the Editor Original Research Papers (Regular Papers) Rapid Communications Review Articles Technical Notes.
期刊最新文献
Behaviour of 7.62x39mm tracer and API bullets in soft tissue. Effect of UV exposure on DNA deposited on drug capsules. Methods of extraction of genetic material from hard tissues: A review of the 21st century advancements. Computational forensic identification of deceased using 3D bone segmentation and registration. Investigating the protein modification and degradation under the influence of petrol and kerosene.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1