Nucleolin-targeted silicon-based nanoparticles for enhanced chemo-sonodynamic therapy of diffuse large B-cell lymphoma

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2025-01-28 DOI:10.1016/j.ijpharm.2025.125294
Yubo Wang , Yong Zhou , Jinling Wang , Lu Zhang , Chen Liu , Ding Guo , Yanlin Yu , Roumei Ye , Yun Wang , Bing Xu , Yiming Luo , Dengyue Chen
{"title":"Nucleolin-targeted silicon-based nanoparticles for enhanced chemo-sonodynamic therapy of diffuse large B-cell lymphoma","authors":"Yubo Wang ,&nbsp;Yong Zhou ,&nbsp;Jinling Wang ,&nbsp;Lu Zhang ,&nbsp;Chen Liu ,&nbsp;Ding Guo ,&nbsp;Yanlin Yu ,&nbsp;Roumei Ye ,&nbsp;Yun Wang ,&nbsp;Bing Xu ,&nbsp;Yiming Luo ,&nbsp;Dengyue Chen","doi":"10.1016/j.ijpharm.2025.125294","DOIUrl":null,"url":null,"abstract":"<div><div>The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved. This study has developed a biocompatible nanomedicine delivery system, PA-HM@DOX/ICG, employing hollow mesoporous silica nanoparticles (HMSNs) as the nanocarrier. The nanomedicine incorporates the chemotherapeutic agent doxorubicin (DOX) along with the sonosensitizer indocyanine green (ICG) within its encapsulation, and undergoes additional surface modification using lipid-nucleic acid conjugates (DSPE-PEG-AS1411) to facilitate active targeted delivery. In vitro cellular experiments have validated that PA-HM@DOX/ICG can specifically recognize and be internalized by SU-DHL-4 lymphoma cells due to the overexpression of nucleolin on their surface. The synergistic effects of DOX-induced DNA damage and reactive oxygen species (ROS) generated by ultrasound-activated ICG induce apoptosis in these cells. Furthermore, PA-HM@DOX/ICG displays minimal toxicity towards LO2 normal hepatocytes, indicating a favorable biosafety profile. In vivo animal studies have shown that PA-HM@DOX/ICG effectively accumulates in tumor sites in mice through both the enhanced permeability and retention (EPR) effect and nucleolin-mediated targeting. Under ultrasound irradiation, PA-HM@DOX/ICG significantly inhibits tumor growth. This study introduces a nanoplatform that integrates chemotherapy with sonodynamic therapy, offering a novel approach for the efficient treatment of DLBCL.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"671 ","pages":"Article 125294"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001309","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The limited selectivity and high systemic toxicity of traditional chemotherapy hinder its efficacy in treating diffuse large B-cell lymphoma (DLBCL). The combination of sonodynamic therapy (SDT) with chemotherapy has emerged as a novel strategy for cancer treatment, aiming to improve therapeutic outcomes and reduce systemic toxicity. However, challenges such as elevated drug clearance rates and non-selecitivity remain to be resolved. This study has developed a biocompatible nanomedicine delivery system, PA-HM@DOX/ICG, employing hollow mesoporous silica nanoparticles (HMSNs) as the nanocarrier. The nanomedicine incorporates the chemotherapeutic agent doxorubicin (DOX) along with the sonosensitizer indocyanine green (ICG) within its encapsulation, and undergoes additional surface modification using lipid-nucleic acid conjugates (DSPE-PEG-AS1411) to facilitate active targeted delivery. In vitro cellular experiments have validated that PA-HM@DOX/ICG can specifically recognize and be internalized by SU-DHL-4 lymphoma cells due to the overexpression of nucleolin on their surface. The synergistic effects of DOX-induced DNA damage and reactive oxygen species (ROS) generated by ultrasound-activated ICG induce apoptosis in these cells. Furthermore, PA-HM@DOX/ICG displays minimal toxicity towards LO2 normal hepatocytes, indicating a favorable biosafety profile. In vivo animal studies have shown that PA-HM@DOX/ICG effectively accumulates in tumor sites in mice through both the enhanced permeability and retention (EPR) effect and nucleolin-mediated targeting. Under ultrasound irradiation, PA-HM@DOX/ICG significantly inhibits tumor growth. This study introduces a nanoplatform that integrates chemotherapy with sonodynamic therapy, offering a novel approach for the efficient treatment of DLBCL.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
cetyltrimethylammonium chloride (CTAC)
阿拉丁
Tetraethyl orthosilicate (TEOS)
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Follicle-stimulating hormone peptide-conjugated liposomes in the treatment of epithelial ovarian cancer through the induction of M2-to-M1 macrophage repolarization. Harnessing the power of inorganic nanoparticles for the management of TNBC. Stability and recrystallization of amorphous solid dispersions prepared by hot-melt extrusion and spray drying. Targeted nasal delivery of LNP-mRNAs aerosolised by Rayleigh breakup technology. Challenges and opportunities in targeting epigenetic mechanisms for pulmonary arterial hypertension treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1