Weihan Xiao, Wang Zhou, Hongmei Yuan, Xiaoling Liu, Fanding He, Xiaomin Hu, Xianjun Ye, Xiachuan Qin
{"title":"A radiopathomics model for predicting large-number cervical lymph node metastasis in clinical N0 papillary thyroid carcinoma.","authors":"Weihan Xiao, Wang Zhou, Hongmei Yuan, Xiaoling Liu, Fanding He, Xiaomin Hu, Xianjun Ye, Xiachuan Qin","doi":"10.1007/s00330-025-11377-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to develop a multimodal radiopathomics model utilising preoperative ultrasound (US) and fine-needle aspiration cytology (FNAC) to predict large-number cervical lymph node metastasis (CLNM) in patients with clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC).</p><p><strong>Materials and methods: </strong>This multicentre retrospective study included patients with PTC between October 2017 and June 2024 across seven institutions. Patients were categorised based on the presence or absence of large-number CLNM in training, validation, and external testing cohorts. A clinical model was developed based on the maximum diameter of thyroid nodules. Radiomics features were extracted from US images and pathomics features were extracted from FNAC images. Feature selection was performed using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator regression. Six machine learning (ML) algorithms were employed to construct radiomics, pathomics, and radiopathomics models. Predictive performance was assessed using the area under the curve (AUC), and decision curve analysis (DCA).</p><p><strong>Results: </strong>A total of 426 patients with PTC (41.65 ± 12.47 years; 124 men) were included in this study, with 213 (50%) exhibiting large-number CLNM. The multimodal radiopathomics model demonstrated excellent predictive capabilities with AUCs 0.921, 0.873, 0.903; accuracies (ACCs) 0.852, 0.800, 0.833; sensitivities (SENs) 0.876, 0.867, 0.857; specificities (SPEs) 0.829, 0.733, 0.810, for the training, validation, and testing cohorts, respectively. It significantly outperformed the clinical model (AUCs 0.730, 0.698, 0.630; ACCs 0.690, 0.656, 0.627; SENs 0.686, 0.378, 0.556; SPEs 0.695, 0.933, 0.698), the radiomics model (AUCs 0.819, 0.762, 0.783; ACCs 0.752, 0.722, 0.738; SENs 0.657, 0.844, 0.937; SPEs 0.848, 0.600, 0.540), and the pathomics model (AUCs 0.882, 0.786, 0.800; ACCs 0.829, 0.756, 0.786; SENs 0.819, 0.889, 0.857; SPEs 0.838, 0.633, 0.714).</p><p><strong>Conclusion: </strong>The multimodal radiopathomics model demonstrated significant advantages in the preoperative prediction of large-number CLNM in patients with cN0 PTC.</p><p><strong>Key points: </strong>Question Accurate preoperative prediction of large-number CLNM in PTC patients can guide treatment plans, but single-modality diagnostic performance remains limited. Findings The radiopathomics model utilising preoperative US and FNAC images effectively predicted large-number CLNM in both validation and testing cohorts, outperforming single predictive models. Clinical relevance Our study proposes a multimodal radiopathomics model based on preoperative US and FNAC images, which can effectively predict large-number CLNM in PTC preoperatively and guide clinicians in treatment planning.</p>","PeriodicalId":12076,"journal":{"name":"European Radiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00330-025-11377-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: This study aimed to develop a multimodal radiopathomics model utilising preoperative ultrasound (US) and fine-needle aspiration cytology (FNAC) to predict large-number cervical lymph node metastasis (CLNM) in patients with clinically lymph node-negative (cN0) papillary thyroid carcinoma (PTC).
Materials and methods: This multicentre retrospective study included patients with PTC between October 2017 and June 2024 across seven institutions. Patients were categorised based on the presence or absence of large-number CLNM in training, validation, and external testing cohorts. A clinical model was developed based on the maximum diameter of thyroid nodules. Radiomics features were extracted from US images and pathomics features were extracted from FNAC images. Feature selection was performed using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator regression. Six machine learning (ML) algorithms were employed to construct radiomics, pathomics, and radiopathomics models. Predictive performance was assessed using the area under the curve (AUC), and decision curve analysis (DCA).
Results: A total of 426 patients with PTC (41.65 ± 12.47 years; 124 men) were included in this study, with 213 (50%) exhibiting large-number CLNM. The multimodal radiopathomics model demonstrated excellent predictive capabilities with AUCs 0.921, 0.873, 0.903; accuracies (ACCs) 0.852, 0.800, 0.833; sensitivities (SENs) 0.876, 0.867, 0.857; specificities (SPEs) 0.829, 0.733, 0.810, for the training, validation, and testing cohorts, respectively. It significantly outperformed the clinical model (AUCs 0.730, 0.698, 0.630; ACCs 0.690, 0.656, 0.627; SENs 0.686, 0.378, 0.556; SPEs 0.695, 0.933, 0.698), the radiomics model (AUCs 0.819, 0.762, 0.783; ACCs 0.752, 0.722, 0.738; SENs 0.657, 0.844, 0.937; SPEs 0.848, 0.600, 0.540), and the pathomics model (AUCs 0.882, 0.786, 0.800; ACCs 0.829, 0.756, 0.786; SENs 0.819, 0.889, 0.857; SPEs 0.838, 0.633, 0.714).
Conclusion: The multimodal radiopathomics model demonstrated significant advantages in the preoperative prediction of large-number CLNM in patients with cN0 PTC.
Key points: Question Accurate preoperative prediction of large-number CLNM in PTC patients can guide treatment plans, but single-modality diagnostic performance remains limited. Findings The radiopathomics model utilising preoperative US and FNAC images effectively predicted large-number CLNM in both validation and testing cohorts, outperforming single predictive models. Clinical relevance Our study proposes a multimodal radiopathomics model based on preoperative US and FNAC images, which can effectively predict large-number CLNM in PTC preoperatively and guide clinicians in treatment planning.
期刊介绍:
European Radiology (ER) continuously updates scientific knowledge in radiology by publication of strong original articles and state-of-the-art reviews written by leading radiologists. A well balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes ER an indispensable source for current information in this field.
This is the Journal of the European Society of Radiology, and the official journal of a number of societies.
From 2004-2008 supplements to European Radiology were published under its companion, European Radiology Supplements, ISSN 1613-3749.