Deep learning reconstruction of zero-echo time sequences to improve visualization of osseous structures and associated pathologies in MRI of cervical spine.

IF 4.1 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Insights into Imaging Pub Date : 2025-01-29 DOI:10.1186/s13244-025-01902-0
Malwina Kaniewska, Fabio Zecca, Carina Obermüller, Falko Ensle, Eva Deininger-Czermak, Maelene Lohezic, Roman Guggenberger
{"title":"Deep learning reconstruction of zero-echo time sequences to improve visualization of osseous structures and associated pathologies in MRI of cervical spine.","authors":"Malwina Kaniewska, Fabio Zecca, Carina Obermüller, Falko Ensle, Eva Deininger-Czermak, Maelene Lohezic, Roman Guggenberger","doi":"10.1186/s13244-025-01902-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>To determine whether deep learning-based reconstructions of zero-echo-time (ZTE-DL) sequences enhance image quality and bone visualization in cervical spine MRI compared to traditional zero-echo-time (ZTE) techniques, and to assess the added value of ZTE-DL sequences alongside standard cervical spine MRI for comprehensive pathology evaluation.</p><p><strong>Methods: </strong>In this retrospective study, 52 patients underwent cervical spine MRI using ZTE, ZTE-DL, and T2-weighted 3D sequences on a 1.5-Tesla scanner. ZTE-DL sequences were reconstructed from raw data using the AirReconDL algorithm. Three blinded readers independently evaluated image quality, artifacts, and bone delineation on a 5-point Likert scale. Cervical structures and pathologies, including soft tissue and bone components in spinal canal and neural foraminal stenosis, were analyzed. Image quality was quantitatively assessed by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).</p><p><strong>Results: </strong>Mean image quality scores were 2.0 ± 0.7 for ZTE and 3.2 ± 0.6 for ZTE-DL, with ZTE-DL exhibiting fewer artifacts and superior bone delineation. Significant differences were observed between T2-weighted and ZTE-DL sequences for evaluating intervertebral space, anterior osteophytes, spinal canal, and neural foraminal stenosis (p < 0.05), with ZTE-DL providing more accurate assessments. ZTE-DL also showed improved evaluation of the osseous components of neural foraminal stenosis compared to ZTE (p < 0.05).</p><p><strong>Conclusions: </strong>ZTE-DL sequences offer superior image quality and bone visualization compared to ZTE sequences and enhance standard cervical spine MRI in assessing bone involvement in spinal canal and neural foraminal stenosis.</p><p><strong>Critical relevance statement: </strong>Deep learning-based reconstructions improve zero-echo-time sequences in cervical spine MRI by enhancing image quality and bone visualization. This advancement offers additional insights for assessing bone involvement in spinal canal and neural foraminal stenosis, advancing clinical radiology practice.</p><p><strong>Key points: </strong>Conventional MRI encounters challenges with osseous structures due to low signal-to-noise ratio. Zero-echo-time (ZET) sequences offer CT-like images of the C-spine but with lower quality. Deep learning reconstructions improve image quality of zero-echo-time sequences. ZTE sequences with deep learning reconstructions refine cervical spine osseous pathology assessment. These sequences aid assessment of bone involvement in spinal and foraminal stenosis.</p>","PeriodicalId":13639,"journal":{"name":"Insights into Imaging","volume":"16 1","pages":"29"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780046/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insights into Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13244-025-01902-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: To determine whether deep learning-based reconstructions of zero-echo-time (ZTE-DL) sequences enhance image quality and bone visualization in cervical spine MRI compared to traditional zero-echo-time (ZTE) techniques, and to assess the added value of ZTE-DL sequences alongside standard cervical spine MRI for comprehensive pathology evaluation.

Methods: In this retrospective study, 52 patients underwent cervical spine MRI using ZTE, ZTE-DL, and T2-weighted 3D sequences on a 1.5-Tesla scanner. ZTE-DL sequences were reconstructed from raw data using the AirReconDL algorithm. Three blinded readers independently evaluated image quality, artifacts, and bone delineation on a 5-point Likert scale. Cervical structures and pathologies, including soft tissue and bone components in spinal canal and neural foraminal stenosis, were analyzed. Image quality was quantitatively assessed by signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR).

Results: Mean image quality scores were 2.0 ± 0.7 for ZTE and 3.2 ± 0.6 for ZTE-DL, with ZTE-DL exhibiting fewer artifacts and superior bone delineation. Significant differences were observed between T2-weighted and ZTE-DL sequences for evaluating intervertebral space, anterior osteophytes, spinal canal, and neural foraminal stenosis (p < 0.05), with ZTE-DL providing more accurate assessments. ZTE-DL also showed improved evaluation of the osseous components of neural foraminal stenosis compared to ZTE (p < 0.05).

Conclusions: ZTE-DL sequences offer superior image quality and bone visualization compared to ZTE sequences and enhance standard cervical spine MRI in assessing bone involvement in spinal canal and neural foraminal stenosis.

Critical relevance statement: Deep learning-based reconstructions improve zero-echo-time sequences in cervical spine MRI by enhancing image quality and bone visualization. This advancement offers additional insights for assessing bone involvement in spinal canal and neural foraminal stenosis, advancing clinical radiology practice.

Key points: Conventional MRI encounters challenges with osseous structures due to low signal-to-noise ratio. Zero-echo-time (ZET) sequences offer CT-like images of the C-spine but with lower quality. Deep learning reconstructions improve image quality of zero-echo-time sequences. ZTE sequences with deep learning reconstructions refine cervical spine osseous pathology assessment. These sequences aid assessment of bone involvement in spinal and foraminal stenosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Insights into Imaging
Insights into Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
7.30
自引率
4.30%
发文量
182
审稿时长
13 weeks
期刊介绍: Insights into Imaging (I³) is a peer-reviewed open access journal published under the brand SpringerOpen. All content published in the journal is freely available online to anyone, anywhere! I³ continuously updates scientific knowledge and progress in best-practice standards in radiology through the publication of original articles and state-of-the-art reviews and opinions, along with recommendations and statements from the leading radiological societies in Europe. Founded by the European Society of Radiology (ESR), I³ creates a platform for educational material, guidelines and recommendations, and a forum for topics of controversy. A balanced combination of review articles, original papers, short communications from European radiological congresses and information on society matters makes I³ an indispensable source for current information in this field. I³ is owned by the ESR, however authors retain copyright to their article according to the Creative Commons Attribution License (see Copyright and License Agreement). All articles can be read, redistributed and reused for free, as long as the author of the original work is cited properly. The open access fees (article-processing charges) for this journal are kindly sponsored by ESR for all Members. The journal went open access in 2012, which means that all articles published since then are freely available online.
期刊最新文献
A machine learning model based on preoperative multiparametric quantitative DWI can effectively predict the survival and recurrence risk of pancreatic ductal adenocarcinoma. Assessing the perceived impact of ESOR training programs on radiologists' professional development. Charting a sustainable future in radiology: evaluating radiologists' knowledge, attitudes, and practices toward environmental responsibility. Diagnosis of adult midgut malrotation in CT: sign of absent retromesenteric duodenum reliable. Tumour surface regularity predicts survival and benefit from gross total resection in IDH-wildtype glioblastoma patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1