Alice J. Turner , Elke Prasad , Alastair J. Florence , Gavin W. Halbert
{"title":"Investigation of aerosol jet printing for the preparation of solid dosage forms","authors":"Alice J. Turner , Elke Prasad , Alastair J. Florence , Gavin W. Halbert","doi":"10.1016/j.ijpharm.2025.125288","DOIUrl":null,"url":null,"abstract":"<div><div>Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring. Aerosol jet printing provided a high degree of control allowing effective scaling, by size and layering, and control over drug distribution. Aerosol jet printing of pure active pharmaceutical ingredient (fenofibrate) resulted in crystalline material but as polymer excipient content was increased, morphological changes occurred and a fully amorphous product was generated on inclusion of 75 % (w/w solute) polymer content or above. This amorphous product has been found to exhibit a 10-fold increase in drug dissolution relative to comparable physical mixtures. In conclusion, aerosol jet printing is a novel and effective, scalable method providing improved dissolution coupled with high spatial precision and warrants further investigation.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"671 ","pages":"Article 125288"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325001243","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Oral drug delivery remains the preferred method of drug administration but due to poor solubility many active pharmaceutical ingredients (APIs) are ill suited to this. A number of methods to improve solubility of poorly soluble Biopharmaceutical Classification System (BCS) Class II drugs already exist but there is a lack of scalable, flexible methods. As such the current study applies the innovative technique of aerosol jet printing to increase the dissolution capabilities of a Class II drug in a manner which permits flexibility to allow dosage form tailoring. Aerosol jet printing provided a high degree of control allowing effective scaling, by size and layering, and control over drug distribution. Aerosol jet printing of pure active pharmaceutical ingredient (fenofibrate) resulted in crystalline material but as polymer excipient content was increased, morphological changes occurred and a fully amorphous product was generated on inclusion of 75 % (w/w solute) polymer content or above. This amorphous product has been found to exhibit a 10-fold increase in drug dissolution relative to comparable physical mixtures. In conclusion, aerosol jet printing is a novel and effective, scalable method providing improved dissolution coupled with high spatial precision and warrants further investigation.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.