Variations in ECM Topography, Fiber Alignment, Mechanical Stiffness, and Cellular Composition Between Ventral and Dorsal Ligamentum Flavum Layers: Insights Into Hypertrophy Pathogenesis

IF 3.4 3区 医学 Q1 ORTHOPEDICS JOR Spine Pub Date : 2025-01-30 DOI:10.1002/jsp2.70033
Ting-Yuan Tu, Yu-Chia Hsu, Chia-En Yang, Yan-Jye Shyong, Cheng-Hsiang Kuo, Yuan-Fu Liu, Shu-Shien Shih, Cheng-Li Lin
{"title":"Variations in ECM Topography, Fiber Alignment, Mechanical Stiffness, and Cellular Composition Between Ventral and Dorsal Ligamentum Flavum Layers: Insights Into Hypertrophy Pathogenesis","authors":"Ting-Yuan Tu,&nbsp;Yu-Chia Hsu,&nbsp;Chia-En Yang,&nbsp;Yan-Jye Shyong,&nbsp;Cheng-Hsiang Kuo,&nbsp;Yuan-Fu Liu,&nbsp;Shu-Shien Shih,&nbsp;Cheng-Li Lin","doi":"10.1002/jsp2.70033","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood. This study aimed to bridge the existing knowledge gap concerning the intricate relationships between ECM characteristics, mechanical properties, and myofibroblast expression in LFH.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Histological staining, scanning electron microscopy, and atomic force microscopy were used to analyze the components, alignment, and mechanical properties of the ECM. Immunostaining and western blot analyses were performed to assess the distribution of myofibroblasts in LF tissues.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>There were notable differences between the dorsal and ventral layers of the hypertrophic ligamentum flavum. Specifically, the dorsal layer exhibited higher collagen content and disorganized fibrous alignment, resulting in reduced stiffness. Immunohistochemistry analysis revealed a significantly greater presence of α-smooth muscle actin (αSMA)-stained cells, a marker for myofibroblasts, in the dorsal layer.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This study offers comprehensive insights into LFH by elucidating the distinctive ECM characteristics, mechanical properties, and cellular composition disparities between the ventral and dorsal layers. These findings significantly enhance our understanding of the pathogenesis of LFH and may inform future research and therapeutic strategies.</p>\n </section>\n </div>","PeriodicalId":14876,"journal":{"name":"JOR Spine","volume":"8 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780719/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOR Spine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jsp2.70033","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Previous studies have suggested that changes in the composition of the extracellular matrix (ECM) play a significant role in the development of ligamentum flavum hypertrophy (LFH) and the histological differences between the ventral and dorsal layers of the hypertrophied ligamentum flavum. Although LFH is associated with increased fibrosis in the dorsal layer, comprehensive research exploring the characteristics of the ECM and its mechanical properties in both regions is limited. Furthermore, the distribution of fibrosis-associated myofibroblasts within LFH remains poorly understood. This study aimed to bridge the existing knowledge gap concerning the intricate relationships between ECM characteristics, mechanical properties, and myofibroblast expression in LFH.

Methods

Histological staining, scanning electron microscopy, and atomic force microscopy were used to analyze the components, alignment, and mechanical properties of the ECM. Immunostaining and western blot analyses were performed to assess the distribution of myofibroblasts in LF tissues.

Results

There were notable differences between the dorsal and ventral layers of the hypertrophic ligamentum flavum. Specifically, the dorsal layer exhibited higher collagen content and disorganized fibrous alignment, resulting in reduced stiffness. Immunohistochemistry analysis revealed a significantly greater presence of α-smooth muscle actin (αSMA)-stained cells, a marker for myofibroblasts, in the dorsal layer.

Conclusions

This study offers comprehensive insights into LFH by elucidating the distinctive ECM characteristics, mechanical properties, and cellular composition disparities between the ventral and dorsal layers. These findings significantly enhance our understanding of the pathogenesis of LFH and may inform future research and therapeutic strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JOR Spine
JOR Spine ORTHOPEDICS-
CiteScore
6.40
自引率
18.90%
发文量
42
审稿时长
10 weeks
期刊最新文献
Annulus Fibrosus Repair via Interpenetration of a Non-Woven Scaffold Supports Tissue Integration and Prevents Re-Herniation Variations in ECM Topography, Fiber Alignment, Mechanical Stiffness, and Cellular Composition Between Ventral and Dorsal Ligamentum Flavum Layers: Insights Into Hypertrophy Pathogenesis The Cross-Sectional Areas and Anterior–Posterior Balance of the Cervical Paraspinal Muscles in Dropped Head Syndrome and Cervical Spondylotic Myelopathy: A Propensity Score-Matched Analysis Explorative Study of Modulatory Effects of Notochordal Cell-Derived Extracellular Vesicles on the IL-1β-Induced Catabolic Cascade in Nucleus Pulposus Cell Pellets and Explants E74-like ETS transcription factor 3 expression and regulation in human intervertebral disc
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1