Yunxiao Wei, Kevin G Mumford, Neil R Thomson, Shupeng Li, Guanlin Guo, Tianxiang Xia, Peng Liu
{"title":"The effect of sub-boiling temperatures on mass transfer from former manufactured gas plant residuals.","authors":"Yunxiao Wei, Kevin G Mumford, Neil R Thomson, Shupeng Li, Guanlin Guo, Tianxiang Xia, Peng Liu","doi":"10.1016/j.jconhyd.2025.104508","DOIUrl":null,"url":null,"abstract":"<p><p>The dissolution of polycyclic aromatic hydrocarbons (PAHs) from coal tar at former manufactured gas plant (FMGP) sites is a long-term threat to groundwater quality. The dissolution rate is often limited by an increase in the viscosity of the non-aqueous phase liquid (NAPL) as the lower molecular weight compounds are depleted over time, and this slow mass transfer prevents the effective application of remediation technologies that rely on NAPL-to-water mass transfer to remove or degrade mass. Increasing subsurface temperatures has the potential to increase mass transfer at FMGP sites by increasing PAH solubility and reducing NAPL viscosity. This study investigated the mass transfer of PAH compounds from a synthetic NAPL mixture and FMGP residual at 25, 50 and 80 °C using well-mixed batch experiments. Effective solubilities increased by up to an order of magnitude and mass transfer rate coefficients increased by up to a factor of 45. Enhancements were greater for higher molecular weight compounds, and for the more complex FMGP NAPL compared to the synthetic mixture due to a more substantial decrease in NAPL viscosity. Simulations using a screening-level model demonstrated the potential for sub-boiling temperature to increase NAPL mass removal at FMGP sites, with increases in concentration up to a factor of seven, and 6 to 87 % of mass remaining after heating to 80 °C for 120 days compared to 25 °C.</p>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"269 ","pages":"104508"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jconhyd.2025.104508","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The dissolution of polycyclic aromatic hydrocarbons (PAHs) from coal tar at former manufactured gas plant (FMGP) sites is a long-term threat to groundwater quality. The dissolution rate is often limited by an increase in the viscosity of the non-aqueous phase liquid (NAPL) as the lower molecular weight compounds are depleted over time, and this slow mass transfer prevents the effective application of remediation technologies that rely on NAPL-to-water mass transfer to remove or degrade mass. Increasing subsurface temperatures has the potential to increase mass transfer at FMGP sites by increasing PAH solubility and reducing NAPL viscosity. This study investigated the mass transfer of PAH compounds from a synthetic NAPL mixture and FMGP residual at 25, 50 and 80 °C using well-mixed batch experiments. Effective solubilities increased by up to an order of magnitude and mass transfer rate coefficients increased by up to a factor of 45. Enhancements were greater for higher molecular weight compounds, and for the more complex FMGP NAPL compared to the synthetic mixture due to a more substantial decrease in NAPL viscosity. Simulations using a screening-level model demonstrated the potential for sub-boiling temperature to increase NAPL mass removal at FMGP sites, with increases in concentration up to a factor of seven, and 6 to 87 % of mass remaining after heating to 80 °C for 120 days compared to 25 °C.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.