Kalter Hali, Stéphane Gagnon, Matthew Raleigh, Ikran Ali, Jhase Sniderman, Mansur Halai, Jeremy Hall, Emil H Schemitsch, Aaron Nauth
{"title":"The Effect of Cryopreservation on the Bone Healing Capacity of Endothelial Progenitor Cells in a Bone Defect Model.","authors":"Kalter Hali, Stéphane Gagnon, Matthew Raleigh, Ikran Ali, Jhase Sniderman, Mansur Halai, Jeremy Hall, Emil H Schemitsch, Aaron Nauth","doi":"10.1002/jor.26051","DOIUrl":null,"url":null,"abstract":"<p><p>Endothelial progenitor cells (EPCs) have proven to be a highly effective cell therapy for critical-sized bone defects. Cryopreservation can enable long-term storage of EPCs, allowing their immediate availability on demand. This study compares the therapeutic potential of EPCs before and after cryopreservation in a small animal critical-sized bone defect model. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. The animals received 2 × 10<sup>6</sup> fresh EPCs (n = 7) or 2 × 10<sup>6</sup> cryopreserved EPCs (n = 9) delivered on a gelatin scaffold. Cryopreserved EPCs were stored for 7 days at -80°C prior to thawing and loading onto the gelatin scaffold. Biweekly radiographs were taken until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using microscopic-computed tomography (micro-CT) and biomechanical testing. All animals treated with fresh (n = 7/7) or cryopreserved (n = 9/9) EPCs achieved radiographic union at 10 weeks. Animals treated with fresh EPCs had statistically significant higher radiographic scores at 2 weeks (p < 0.05) but showed no statistically significant differences thereafter (p > 0.05). Micro-CT analysis showed no statistically significant differences between the groups in bone volume (BV) or BV normalized to total volume (p > 0.05), with excellent bone formation in both groups. Finally, there were no differences in biomechanical outcomes between the groups (p > 0.05). These results demonstrate that cryopreserved EPCs are highly effective and equivalent to fresh EPCs for healing critical-sized bone defects in a rat model of nonunion.</p>","PeriodicalId":16650,"journal":{"name":"Journal of Orthopaedic Research®","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Research®","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jor.26051","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Endothelial progenitor cells (EPCs) have proven to be a highly effective cell therapy for critical-sized bone defects. Cryopreservation can enable long-term storage of EPCs, allowing their immediate availability on demand. This study compares the therapeutic potential of EPCs before and after cryopreservation in a small animal critical-sized bone defect model. Five-millimeter segmental defects were created in the right femora of Fischer 344 rats, followed by stabilization with a miniplate and screws. The animals received 2 × 106 fresh EPCs (n = 7) or 2 × 106 cryopreserved EPCs (n = 9) delivered on a gelatin scaffold. Cryopreserved EPCs were stored for 7 days at -80°C prior to thawing and loading onto the gelatin scaffold. Biweekly radiographs were taken until the animals were euthanized 10 weeks after surgery. The operated femora were then evaluated using microscopic-computed tomography (micro-CT) and biomechanical testing. All animals treated with fresh (n = 7/7) or cryopreserved (n = 9/9) EPCs achieved radiographic union at 10 weeks. Animals treated with fresh EPCs had statistically significant higher radiographic scores at 2 weeks (p < 0.05) but showed no statistically significant differences thereafter (p > 0.05). Micro-CT analysis showed no statistically significant differences between the groups in bone volume (BV) or BV normalized to total volume (p > 0.05), with excellent bone formation in both groups. Finally, there were no differences in biomechanical outcomes between the groups (p > 0.05). These results demonstrate that cryopreserved EPCs are highly effective and equivalent to fresh EPCs for healing critical-sized bone defects in a rat model of nonunion.
期刊介绍:
The Journal of Orthopaedic Research is the forum for the rapid publication of high quality reports of new information on the full spectrum of orthopaedic research, including life sciences, engineering, translational, and clinical studies.