Faiza Rasheed, Waqas Khan Kayani, Muhammad Usama Asghar, Aftab Farrukh, Sanam Gul, Ibrahim Khan, Naushaba Nazli
{"title":"Unlocking the potential of biowaste: Sustainable strategies to produce valuable industrial products.","authors":"Faiza Rasheed, Waqas Khan Kayani, Muhammad Usama Asghar, Aftab Farrukh, Sanam Gul, Ibrahim Khan, Naushaba Nazli","doi":"10.1002/jeq2.20671","DOIUrl":null,"url":null,"abstract":"<p><p>Global solid waste generation is expected to double by 2050 from the present annual level of 2.01 metric ton. Traditional biowaste treatment methods, such as landfilling and incineration, cannot meet the need to deal with gigantic amounts of waste and reduce environmental harm. This review critically evaluates existing sustainable waste management strategies highlighting their role in transitioning to a \"reuse and recovery\" paradigm. Sustainable waste management refers to conserving resources and protecting human health, society, and the environment. In this context, this review examines the current advancements and potential trends in using widely available biowaste in novel applications to produce key biofuels (such as biogas and biodiesel) and resources such as corrosion inhibitors, asbestos-free brake pads, nutrient-rich functional foods, bio-cement, bio-based fertilizer, and biodegradable plastic. Among these, biowaste-to-energy conversion (e.g., biogas production) and biodegradable plastic synthesis emerge as particularly impactful strategies due to their scalability and potential to address both waste reduction and resource recovery goals. The strategic utilization of biowaste resources into novel products holds significant promise in mitigating sustainability problems, offering renewable alternatives that are biodegradable and free of harmful additives.</p>","PeriodicalId":15732,"journal":{"name":"Journal of environmental quality","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of environmental quality","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/jeq2.20671","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Global solid waste generation is expected to double by 2050 from the present annual level of 2.01 metric ton. Traditional biowaste treatment methods, such as landfilling and incineration, cannot meet the need to deal with gigantic amounts of waste and reduce environmental harm. This review critically evaluates existing sustainable waste management strategies highlighting their role in transitioning to a "reuse and recovery" paradigm. Sustainable waste management refers to conserving resources and protecting human health, society, and the environment. In this context, this review examines the current advancements and potential trends in using widely available biowaste in novel applications to produce key biofuels (such as biogas and biodiesel) and resources such as corrosion inhibitors, asbestos-free brake pads, nutrient-rich functional foods, bio-cement, bio-based fertilizer, and biodegradable plastic. Among these, biowaste-to-energy conversion (e.g., biogas production) and biodegradable plastic synthesis emerge as particularly impactful strategies due to their scalability and potential to address both waste reduction and resource recovery goals. The strategic utilization of biowaste resources into novel products holds significant promise in mitigating sustainability problems, offering renewable alternatives that are biodegradable and free of harmful additives.
期刊介绍:
Articles in JEQ cover various aspects of anthropogenic impacts on the environment, including agricultural, terrestrial, atmospheric, and aquatic systems, with emphasis on the understanding of underlying processes. To be acceptable for consideration in JEQ, a manuscript must make a significant contribution to the advancement of knowledge or toward a better understanding of existing concepts. The study should define principles of broad applicability, be related to problems over a sizable geographic area, or be of potential interest to a representative number of scientists. Emphasis is given to the understanding of underlying processes rather than to monitoring.
Contributions are accepted from all disciplines for consideration by the editorial board. Manuscripts may be volunteered, invited, or coordinated as a special section or symposium.