Response mechanism of ethanol-tolerant Saccharomyces cerevisiae strain ES-42 to increased ethanol during continuous ethanol fermentation.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Cell Factories Pub Date : 2025-01-30 DOI:10.1186/s12934-025-02663-7
Xue-Xue Ji, Quan Zhang, Bai-Xue Yang, Qing-Ran Song, Zhao-Yong Sun, Cai-Yun Xie, Yue-Qin Tang
{"title":"Response mechanism of ethanol-tolerant Saccharomyces cerevisiae strain ES-42 to increased ethanol during continuous ethanol fermentation.","authors":"Xue-Xue Ji, Quan Zhang, Bai-Xue Yang, Qing-Ran Song, Zhao-Yong Sun, Cai-Yun Xie, Yue-Qin Tang","doi":"10.1186/s12934-025-02663-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted. Cells were collected at different ethanol concentrations (from 60 g/L to 100 g/L) for comparative transcriptomic analysis.</p><p><strong>Results: </strong>During continuous fermentation, as ethanol concentration increased, the expression of genes associated with cytoplasmic ribosomes, translation, and fatty acid biosynthesis progressively declined, while the expression of genes related to heat shock proteins (HSPs) and ubiquitin-mediated protein degradation gradually increased. Besides, cells exhibited distinct responses to varying ethanol concentrations. At lower ethanol concentrations (nearly 70 g/L), genes involved in mitochondrial ribosomes, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, antioxidant enzymes, ergosterol synthesis, and glycerol biosynthesis were specifically upregulated compared to those at 60 g/L. This suggests that cells enhanced respiratory energy production, ROS scavenging capacity, and the synthesis of ergosterol and glycerol to counteract stress. At relatively higher ethanol concentrations (nearly 80 g/L), genes involved in respiration and ergosterol synthesis were inhibited, while those associated with glycolysis and glycerol biosynthesis were notably upregulated. This suggests a metabolic shift from respiration towards enhanced glycerol synthesis. Interestingly, the longevity-regulating pathway seemed to play a pivotal role in mediating the cellular adaptations to different ethanol concentrations. Upon reaching an ethanol concentration of 100 g/L, the aforementioned metabolic activities were largely inhibited. Cells primarily focused on enhancing the clearance of denatured proteins to preserve cellular viability.</p><p><strong>Conclusions: </strong>This study elucidated the mechanisms by which an ethanol-tolerant S. cerevisiae strain adapts to increasing ethanol concentrations during continuous fermentation. The findings suggest that the longevity-regulating pathway may play a critical role in adapting to varying ethanol stress by regulating mitochondrial respiration, glycerol synthesis, ergosterol synthesis, antioxidant enzyme, and HSPs. This work provides a novel and valuable understanding of the mechanisms that govern ethanol tolerance during continuous fermentation.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"33"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-025-02663-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted. Cells were collected at different ethanol concentrations (from 60 g/L to 100 g/L) for comparative transcriptomic analysis.

Results: During continuous fermentation, as ethanol concentration increased, the expression of genes associated with cytoplasmic ribosomes, translation, and fatty acid biosynthesis progressively declined, while the expression of genes related to heat shock proteins (HSPs) and ubiquitin-mediated protein degradation gradually increased. Besides, cells exhibited distinct responses to varying ethanol concentrations. At lower ethanol concentrations (nearly 70 g/L), genes involved in mitochondrial ribosomes, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, antioxidant enzymes, ergosterol synthesis, and glycerol biosynthesis were specifically upregulated compared to those at 60 g/L. This suggests that cells enhanced respiratory energy production, ROS scavenging capacity, and the synthesis of ergosterol and glycerol to counteract stress. At relatively higher ethanol concentrations (nearly 80 g/L), genes involved in respiration and ergosterol synthesis were inhibited, while those associated with glycolysis and glycerol biosynthesis were notably upregulated. This suggests a metabolic shift from respiration towards enhanced glycerol synthesis. Interestingly, the longevity-regulating pathway seemed to play a pivotal role in mediating the cellular adaptations to different ethanol concentrations. Upon reaching an ethanol concentration of 100 g/L, the aforementioned metabolic activities were largely inhibited. Cells primarily focused on enhancing the clearance of denatured proteins to preserve cellular viability.

Conclusions: This study elucidated the mechanisms by which an ethanol-tolerant S. cerevisiae strain adapts to increasing ethanol concentrations during continuous fermentation. The findings suggest that the longevity-regulating pathway may play a critical role in adapting to varying ethanol stress by regulating mitochondrial respiration, glycerol synthesis, ergosterol synthesis, antioxidant enzyme, and HSPs. This work provides a novel and valuable understanding of the mechanisms that govern ethanol tolerance during continuous fermentation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
期刊最新文献
Cell-free expression system: a promising platform for bacteriophage production and engineering. Enhancing recombinant growth factor and serum protein production for cultivated meat manufacturing. Microbial lipases: advances in production, purification, biochemical characterization, and multifaceted applications in industry and medicine. Biogenesis, characterization, and applications of Spirulina selenium nanoparticles. Efficient biosynthesis of β-caryophyllene by engineered Yarrowia lipolytica.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1