Simultaneous whole-brain and cervical spine imaging at 7 T using a neurovascular head and neck coil with 8-channel transceiver array and 56-channel receiver array.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Magnetic Resonance in Medicine Pub Date : 2025-01-29 DOI:10.1002/mrm.30450
Divya Baskaran, Belinda Ding, Son Chu, Paul McElhinney, Sarah Allwood-Spiers, Sydney N Williams, Keith Muir, Natasha Eileen Fullerton, David Andrew Porter, Shajan Gunamony
{"title":"Simultaneous whole-brain and cervical spine imaging at 7 T using a neurovascular head and neck coil with 8-channel transceiver array and 56-channel receiver array.","authors":"Divya Baskaran, Belinda Ding, Son Chu, Paul McElhinney, Sarah Allwood-Spiers, Sydney N Williams, Keith Muir, Natasha Eileen Fullerton, David Andrew Porter, Shajan Gunamony","doi":"10.1002/mrm.30450","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a 7T neurovascular head and neck (NVHN) coil with an extended longitudinal coverage of the brain and cervical spine, with eight transceiver (TxRx) channels and 56 receive (Rx) channels for dynamic parallel-transmit (pTx) applications.</p><p><strong>Methods: </strong>A dual-row transceiver array with six elements in the upper row and two elements in the lower row was designed using combined electromagnetic and circuit optimization and constructed. A 56Rx array covering the brain and cervical spine was designed and combined with the transceiver array. The performance of the 8TxRx56Rx NVHN coil such as <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> , signal-to-noise ratio, and g-factor were validated in phantom and in vivo studies and compared with an in-house 8Tx64Rx head coil. High-resolution in vivo images were acquired with the NVHN and head coil.</p><p><strong>Results: </strong>The average <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> in phantom while exciting the upper six channels and all eight channels are 43.45 nT/V and 45.80 nT/V, respectively, demonstrating that the available <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {\\mathrm{B}}_1^{+} $$</annotation></semantics> </math> field is seamlessly distributed in the brain and/or cervical spine, depending on the chosen excitation. The 8TxRx56Rx NVHN coil increases the SNR in the cervical spine and central brain by a factor of 2.18 and 1.16, respectively, compared with the 8Tx64Rx head coil. Furthermore, it demonstrates similar 1/g-factor performance for acceleration factors up to 5 × 5 compared with the head coil and provides diagnostic-quality images of the brain and spinal cord in a single acquisition.</p><p><strong>Conclusion: </strong>The extended longitudinal coverage of the NVHN coil promises to improve the clinical application of the current generation of pTx 7T MRI systems with 8Tx channels.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30450","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop a 7T neurovascular head and neck (NVHN) coil with an extended longitudinal coverage of the brain and cervical spine, with eight transceiver (TxRx) channels and 56 receive (Rx) channels for dynamic parallel-transmit (pTx) applications.

Methods: A dual-row transceiver array with six elements in the upper row and two elements in the lower row was designed using combined electromagnetic and circuit optimization and constructed. A 56Rx array covering the brain and cervical spine was designed and combined with the transceiver array. The performance of the 8TxRx56Rx NVHN coil such as B 1 + $$ {\mathrm{B}}_1^{+} $$ , signal-to-noise ratio, and g-factor were validated in phantom and in vivo studies and compared with an in-house 8Tx64Rx head coil. High-resolution in vivo images were acquired with the NVHN and head coil.

Results: The average B 1 + $$ {\mathrm{B}}_1^{+} $$ in phantom while exciting the upper six channels and all eight channels are 43.45 nT/V and 45.80 nT/V, respectively, demonstrating that the available B 1 + $$ {\mathrm{B}}_1^{+} $$ field is seamlessly distributed in the brain and/or cervical spine, depending on the chosen excitation. The 8TxRx56Rx NVHN coil increases the SNR in the cervical spine and central brain by a factor of 2.18 and 1.16, respectively, compared with the 8Tx64Rx head coil. Furthermore, it demonstrates similar 1/g-factor performance for acceleration factors up to 5 × 5 compared with the head coil and provides diagnostic-quality images of the brain and spinal cord in a single acquisition.

Conclusion: The extended longitudinal coverage of the NVHN coil promises to improve the clinical application of the current generation of pTx 7T MRI systems with 8Tx channels.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
期刊最新文献
Considerations and recommendations from the ISMRM diffusion study group for preclinical diffusion MRI: Part 1: In vivo small-animal imaging. Considerations and recommendations from the ISMRM Diffusion Study Group for preclinical diffusion MRI: Part 3-Ex vivo imaging: Data processing, comparisons with microscopy, and tractography. On the RF safety of titanium mesh head implants in 7 T MRI systems: an investigation. 3D joint T1/T1 ρ/T2 mapping and water-fat imaging for contrast-agent free myocardial tissue characterization at 1.5T. Whole liver phase-based R2 mapping in liver iron overload within a breath-hold.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1