Effects of titanium oxide nanoparticles on growth, biochemical composition, and photosystem mechanism of marine microalgae Isochrysis galbana COR-A3.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2025-01-30 DOI:10.1080/17435390.2025.2454267
Manikandan Sivakumar, Inbakandan Dhinakarasamy, Subham Chakraborty, Clarita Clements, Naren Kumar Thirumurugan, Anu Chandrasekar, Jeevitha Vinayagam, Chandrasekar Kumar, Rajendar Thirugnanasambandam, Ramesh Kumar V, Valli Nachiyar Chandrasekaran
{"title":"Effects of titanium oxide nanoparticles on growth, biochemical composition, and photosystem mechanism of marine microalgae <i>Isochrysis galbana</i> COR-A3.","authors":"Manikandan Sivakumar, Inbakandan Dhinakarasamy, Subham Chakraborty, Clarita Clements, Naren Kumar Thirumurugan, Anu Chandrasekar, Jeevitha Vinayagam, Chandrasekar Kumar, Rajendar Thirugnanasambandam, Ramesh Kumar V, Valli Nachiyar Chandrasekaran","doi":"10.1080/17435390.2025.2454267","DOIUrl":null,"url":null,"abstract":"<p><p>The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on <i>Isochrysis galbana</i> COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function. Cells were exposed to TiONPs concentration of 10-50 mg/L and assessments were conducted over 96 h to evaluate cell viability, biochemical composition, photo-physiology, oxidative stress and morphological deformations. At 50 mg/L concentration, cell viability was significantly reduced by 73.42 ± 3.46% and subsequent decrease of 42.8%, 29.2%, 44.2% in carbohydrate, protein and lipid content were observed. TiONPs exposure elevates the reactive oxygen species production and thereby impairing the photosystem II efficiency and disrupting the cellular metabolism. Morphological analysis revealed significant cell membrane disruption and plasmolysis. These cascading effects reveal TiONPs ability to interfere with algal physiological process, potentially affecting the primary productivity in marine ecosystem. Our findings highlight the ecological risk associated with the TiONPs, emphasizing the need for regulatory measures to mitigate the nanoparticle pollution in aquatic environment. This study provides more insights on the TiONPs induced toxicity in marine microalgae by altering the photosynthetic performance and biochemical integrity.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"1-24"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2025.2454267","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on Isochrysis galbana COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function. Cells were exposed to TiONPs concentration of 10-50 mg/L and assessments were conducted over 96 h to evaluate cell viability, biochemical composition, photo-physiology, oxidative stress and morphological deformations. At 50 mg/L concentration, cell viability was significantly reduced by 73.42 ± 3.46% and subsequent decrease of 42.8%, 29.2%, 44.2% in carbohydrate, protein and lipid content were observed. TiONPs exposure elevates the reactive oxygen species production and thereby impairing the photosystem II efficiency and disrupting the cellular metabolism. Morphological analysis revealed significant cell membrane disruption and plasmolysis. These cascading effects reveal TiONPs ability to interfere with algal physiological process, potentially affecting the primary productivity in marine ecosystem. Our findings highlight the ecological risk associated with the TiONPs, emphasizing the need for regulatory measures to mitigate the nanoparticle pollution in aquatic environment. This study provides more insights on the TiONPs induced toxicity in marine microalgae by altering the photosynthetic performance and biochemical integrity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Protective effects of quercetin on intestinal barrier and cellular viability against silver nanoparticle exposure: insights from an intestinal co-culture model. Effects of titanium oxide nanoparticles on growth, biochemical composition, and photosystem mechanism of marine microalgae Isochrysis galbana COR-A3. Review of carbonaceous nanoparticles for antibacterial uses in various dental infections. Knock-out mouse models and single particle ICP-MS reveal that SP-D and SP-A deficiency reduces agglomeration of inhaled gold nanoparticles in vivo without significant changes to overall lung clearance. Evaluation of anticancer activity of urotropine surface modified iron oxide nanoparticles using a panel of forty breast cancer cell lines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1