{"title":"Maslinic acid improves mitochondrial function and inhibits oxidative stress and autophagy in human gastric smooth muscle cells.","authors":"Xiaoying Zheng, Shuning Zhang, Qiaobin Chen","doi":"10.1515/biol-2022-1036","DOIUrl":null,"url":null,"abstract":"<p><p>Functional dyspepsia (FD) is a chronic disease that occurs in the gastroduodenal region and significantly impacts human health. Maslinic acid (MA), a pentacyclic triterpene acid, is the primary bioactive ingredient in Chinese medicinal herbs such as hawthorn, which exhibits beneficial impacts on the regulation of various disease progressions. However, the specific functions and associated pathways of MA in FD progression remain unclear and require further investigation. In this work, it was demonstrated that MA enhanced the cell viability of human gastric smooth muscle cells (HGSMCs). In addition, the mitochondrial dysfunctions induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) were rescued after MA treatment. Furthermore, autophagy was increased following CCCP treatment, but this phenomenon was counteracted after MA treatment. The oxidative stress, elevated after CCCP treatment, was alleviated following MA addition. Finally, the AMPK/SIRT1 pathway was suppressed after CCCP stimulation but was re-activated after MA treatment. In conclusion, it was uncovered that MA accelerated HGSMC viability and improved mitochondrial function, inhibited autophagy, alleviated oxidative stress, and stimulated the AMPK/SIRT1 pathway. This discovery may offer new insight into the therapeutic effects of MA in FD progression.</p>","PeriodicalId":19605,"journal":{"name":"Open Life Sciences","volume":"20 1","pages":"20221036"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-1036","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Functional dyspepsia (FD) is a chronic disease that occurs in the gastroduodenal region and significantly impacts human health. Maslinic acid (MA), a pentacyclic triterpene acid, is the primary bioactive ingredient in Chinese medicinal herbs such as hawthorn, which exhibits beneficial impacts on the regulation of various disease progressions. However, the specific functions and associated pathways of MA in FD progression remain unclear and require further investigation. In this work, it was demonstrated that MA enhanced the cell viability of human gastric smooth muscle cells (HGSMCs). In addition, the mitochondrial dysfunctions induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) were rescued after MA treatment. Furthermore, autophagy was increased following CCCP treatment, but this phenomenon was counteracted after MA treatment. The oxidative stress, elevated after CCCP treatment, was alleviated following MA addition. Finally, the AMPK/SIRT1 pathway was suppressed after CCCP stimulation but was re-activated after MA treatment. In conclusion, it was uncovered that MA accelerated HGSMC viability and improved mitochondrial function, inhibited autophagy, alleviated oxidative stress, and stimulated the AMPK/SIRT1 pathway. This discovery may offer new insight into the therapeutic effects of MA in FD progression.
期刊介绍:
Open Life Sciences (previously Central European Journal of Biology) is a fast growing peer-reviewed journal, devoted to scholarly research in all areas of life sciences, such as molecular biology, plant science, biotechnology, cell biology, biochemistry, biophysics, microbiology and virology, ecology, differentiation and development, genetics and many others. Open Life Sciences assures top quality of published data through critical peer review and editorial involvement throughout the whole publication process. Thanks to the Open Access model of publishing, it also offers unrestricted access to published articles for all users.