Chimeric cytokine receptor TGF-β RⅡ/IL-21R improves CAR-NK cell function by reversing the immunosuppressive tumor microenvironment of gastric cancer

IF 9.1 2区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmacological research Pub Date : 2025-02-01 DOI:10.1016/j.phrs.2025.107637
Yaojun Ren , Min Xue , Xinhui Hui , Xiuyu Liu , Muhammad Asad Farooq , Yiran Chen , Yuzhou Ji , Yixin Duan , Iqra Ajmal , Jie Yao , Wenzheng Jiang
{"title":"Chimeric cytokine receptor TGF-β RⅡ/IL-21R improves CAR-NK cell function by reversing the immunosuppressive tumor microenvironment of gastric cancer","authors":"Yaojun Ren ,&nbsp;Min Xue ,&nbsp;Xinhui Hui ,&nbsp;Xiuyu Liu ,&nbsp;Muhammad Asad Farooq ,&nbsp;Yiran Chen ,&nbsp;Yuzhou Ji ,&nbsp;Yixin Duan ,&nbsp;Iqra Ajmal ,&nbsp;Jie Yao ,&nbsp;Wenzheng Jiang","doi":"10.1016/j.phrs.2025.107637","DOIUrl":null,"url":null,"abstract":"<div><div>Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body’s anti-cancer defense, and chimeric antigen receptor (CAR)–NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21 R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21 R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway. We successfully constructed NKG2D-CAR-NK cells expressing TRII/21 R and demonstrated strong anti-tumor activity against cancer cells both in vitro and in vivo. The co-expression of TRII/21 R in CAR-NK cells enhanced the cytotoxicity, promoted proliferation and survival capabilities, and reduced the expression of exhaustion markers. In the xenograft mouse model, TRII/21R-CAR-NK cells significantly inhibited tumor growth and improved the survival rate of tumor-bearing mice compared to the mice receiving control CAR-NK cells. Additionally, TRII/21 R co-expression enhanced NK cells' infiltration, activation, and persistence within the tumor, indicating a robust anti-tumor response mediated by the JAK-STAT3 signaling pathway. This study underscores the therapeutic potential of TRII/21R-modified CAR-NK cells as a breakthrough strategy for combating cancer.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"212 ","pages":"Article 107637"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825000623","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Gastric cancer remains a significant global health burden, characterized by regional variations in incidence and poor survival prospects in advanced stages. Natural killer (NK) cells play a crucial role in the body’s anti-cancer defense, and chimeric antigen receptor (CAR)–NK cell therapy is gaining attention as a cutting-edge and promising treatment method. This study aims to tackle the challenge of TGF-β-mediated tumor immune evasion within the immunosuppressive tumor microenvironment by designing a novel chimeric cytokine receptor TRII/21 R, which consists of extracellular domains of TGF-β receptor II (TRII) and transmembrane and intracellular domains of IL-21 receptor (21 R) and can convert the immunosuppressive signal from TGF-β in the tumor microenvironment (TME) into an NK cell activation signal through the IL-21R-STAT3 pathway. We successfully constructed NKG2D-CAR-NK cells expressing TRII/21 R and demonstrated strong anti-tumor activity against cancer cells both in vitro and in vivo. The co-expression of TRII/21 R in CAR-NK cells enhanced the cytotoxicity, promoted proliferation and survival capabilities, and reduced the expression of exhaustion markers. In the xenograft mouse model, TRII/21R-CAR-NK cells significantly inhibited tumor growth and improved the survival rate of tumor-bearing mice compared to the mice receiving control CAR-NK cells. Additionally, TRII/21 R co-expression enhanced NK cells' infiltration, activation, and persistence within the tumor, indicating a robust anti-tumor response mediated by the JAK-STAT3 signaling pathway. This study underscores the therapeutic potential of TRII/21R-modified CAR-NK cells as a breakthrough strategy for combating cancer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
folic acid
来源期刊
Pharmacological research
Pharmacological research 医学-药学
CiteScore
18.70
自引率
3.20%
发文量
491
审稿时长
8 days
期刊介绍: Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.
期刊最新文献
An in vitro pharmacogenomic approach reveals subtype-specific therapeutic vulnerabilities in atypical teratoid/rhabdoid tumors (AT/RT). Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Gut microbiome-derived indole-3-carboxaldehyde regulates stress vulnerability in chronic restraint stress by activating aryl hydrocarbon receptors Quality and composition control of complex TCM preparations through a novel “Herbs-in vivo Compounds-Targets-Pathways” network methodology: The case of Lianhuaqingwen capsules Neuronal PCSK9 regulates cognitive performances via the modulation of ApoER2 synaptic localization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1