EHM: Exploring dynamic alignment and hierarchical clustering in unsupervised domain adaptation via high-order moment-guided contrastive learning

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-22 DOI:10.1016/j.neunet.2025.107188
Tengyue Xu , Jun Dan
{"title":"EHM: Exploring dynamic alignment and hierarchical clustering in unsupervised domain adaptation via high-order moment-guided contrastive learning","authors":"Tengyue Xu ,&nbsp;Jun Dan","doi":"10.1016/j.neunet.2025.107188","DOIUrl":null,"url":null,"abstract":"<div><div>Unsupervised domain adaptation (UDA) aims to annotate unlabeled target domain samples using transferable knowledge learned from the labeled source domain. Optimal transport (OT) is a widely adopted probability metric in transfer learning for quantifying domain discrepancy. However, many existing OT-based UDA methods usually employ an entropic regularization term to solve the OT optimization problem, inevitably resulting in a biased estimation of domain discrepancy. Furthermore, to achieve precise alignment of class distributions, numerous UDA methods commonly employ deep features for guiding contrastive learning, overlooking the loss of discriminative information. Additionally, prior studies frequently use conditional entropy regularization term to cluster unlabeled target samples, which may guide the model toward optimizing in the wrong direction.</div><div>To address the aforementioned issues, this paper proposes a new UDA framework called EHM, which employs a Dynamic Domain Alignment (DDA) strategy, a Reliable High-order Contrastive Alignment (RHCA) strategy, and a Trustworthy Hierarchical Clustering (THC) strategy. Specially, DDA leverages a dynamically adjusted Sinkhorn divergence to measure domain discrepancy, effectively eliminating the biased estimation issue. Our RHCA skillfully conducts contrastive learning in a high-order moment space, significantly enhancing the representation power of transferable features and reducing the domain discrepancy at the class-level. Moreover, THC integrates multi-view information to guide unlabeled samples towards achieving robust clustering. Extensive experiments on various benchmarks demonstrate the effectiveness of our EHM.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107188"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089360802500067X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Unsupervised domain adaptation (UDA) aims to annotate unlabeled target domain samples using transferable knowledge learned from the labeled source domain. Optimal transport (OT) is a widely adopted probability metric in transfer learning for quantifying domain discrepancy. However, many existing OT-based UDA methods usually employ an entropic regularization term to solve the OT optimization problem, inevitably resulting in a biased estimation of domain discrepancy. Furthermore, to achieve precise alignment of class distributions, numerous UDA methods commonly employ deep features for guiding contrastive learning, overlooking the loss of discriminative information. Additionally, prior studies frequently use conditional entropy regularization term to cluster unlabeled target samples, which may guide the model toward optimizing in the wrong direction.
To address the aforementioned issues, this paper proposes a new UDA framework called EHM, which employs a Dynamic Domain Alignment (DDA) strategy, a Reliable High-order Contrastive Alignment (RHCA) strategy, and a Trustworthy Hierarchical Clustering (THC) strategy. Specially, DDA leverages a dynamically adjusted Sinkhorn divergence to measure domain discrepancy, effectively eliminating the biased estimation issue. Our RHCA skillfully conducts contrastive learning in a high-order moment space, significantly enhancing the representation power of transferable features and reducing the domain discrepancy at the class-level. Moreover, THC integrates multi-view information to guide unlabeled samples towards achieving robust clustering. Extensive experiments on various benchmarks demonstrate the effectiveness of our EHM.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Identity Model Transformation for boosting performance and efficiency in object detection network. Enhancing Recommender Systems through Imputation and Social-Aware Graph Convolutional Neural Network. Multi-level feature fusion networks for smoke recognition in remote sensing imagery. Synergistic learning with multi-task DeepONet for efficient PDE problem solving. ICH-PRNet: a cross-modal intracerebral haemorrhage prognostic prediction method using joint-attention interaction mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1