Yaoqin Hong, Jilong Qin, Matthew Thomas Doyle, Peter Richard Reeves
{"title":"Sequestration of dead-end undecaprenyl phosphate-linked oligosaccharide intermediate.","authors":"Yaoqin Hong, Jilong Qin, Matthew Thomas Doyle, Peter Richard Reeves","doi":"10.1099/mic.0.001530","DOIUrl":null,"url":null,"abstract":"<p><p>Most Gram-negative bacteria synthesize a plethora of cell surface polysaccharides that play key roles in immune evasion, cell envelope structural integrity and host-pathogen interactions. In the predominant polysaccharide Wzx/Wzy-dependent pathway, synthesis is divided between the cytoplasmic and periplasmic faces of the membrane. Initially, an oligosaccharide composed of 3-8 sugars is synthesized on a membrane-embedded lipid carrier, undecaprenyl pyrophosphate, within the cytoplasmic face of the membrane. This lipid-linked oligosaccharide is then translocated to the periplasmic face by the Wzx flippase, where it is polymerized into a repeat-unit polysaccharide. Structural alterations to the O-antigen repeating oligosaccharide significantly reduce polysaccharide yield and lead to cell death or morphological abnormalities. These effects are attributed to the substrate recognition function of the Wzx flippase, which we postulated to act as a gatekeeper to ensure that only complete substrates are translocated to the periplasmic face. Here, we labelled <i>Salmonella enterica</i> serovar Typhimurium group B1 with [<sup>14</sup>C] d-galactose. Our results showed that strains unable to synthesize the full O-antigen repeat unit accumulate significantly higher levels of Und-P-linked material (~10-fold). Importantly, this sequestration is alleviated by membrane disruption which opens the lipid-linked oligosaccharide at the cytosolic face to periplasmic ligation to support accumulation occurs at the cytosolic face of the membrane.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"171 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784914/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001530","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Most Gram-negative bacteria synthesize a plethora of cell surface polysaccharides that play key roles in immune evasion, cell envelope structural integrity and host-pathogen interactions. In the predominant polysaccharide Wzx/Wzy-dependent pathway, synthesis is divided between the cytoplasmic and periplasmic faces of the membrane. Initially, an oligosaccharide composed of 3-8 sugars is synthesized on a membrane-embedded lipid carrier, undecaprenyl pyrophosphate, within the cytoplasmic face of the membrane. This lipid-linked oligosaccharide is then translocated to the periplasmic face by the Wzx flippase, where it is polymerized into a repeat-unit polysaccharide. Structural alterations to the O-antigen repeating oligosaccharide significantly reduce polysaccharide yield and lead to cell death or morphological abnormalities. These effects are attributed to the substrate recognition function of the Wzx flippase, which we postulated to act as a gatekeeper to ensure that only complete substrates are translocated to the periplasmic face. Here, we labelled Salmonella enterica serovar Typhimurium group B1 with [14C] d-galactose. Our results showed that strains unable to synthesize the full O-antigen repeat unit accumulate significantly higher levels of Und-P-linked material (~10-fold). Importantly, this sequestration is alleviated by membrane disruption which opens the lipid-linked oligosaccharide at the cytosolic face to periplasmic ligation to support accumulation occurs at the cytosolic face of the membrane.
期刊介绍:
We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms.
Topics include but are not limited to:
Antimicrobials and antimicrobial resistance
Bacteriology and parasitology
Biochemistry and biophysics
Biofilms and biological systems
Biotechnology and bioremediation
Cell biology and signalling
Chemical biology
Cross-disciplinary work
Ecology and environmental microbiology
Food microbiology
Genetics
Host–microbe interactions
Microbial methods and techniques
Microscopy and imaging
Omics, including genomics, proteomics and metabolomics
Physiology and metabolism
Systems biology and synthetic biology
The microbiome.