Impact of sleep disruptions on gray matter structural covariance networks across the Alzheimer's disease continuum.

IF 4 Q1 CLINICAL NEUROLOGY Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring Pub Date : 2025-01-29 eCollection Date: 2025-01-01 DOI:10.1002/dad2.70077
Xiao Luo, Kaicheng Li, Qingze Zeng, Xiaocao Liu, Jixuan Li, Xinyi Zhang, Siyan Zhong, Lingyun Liu, Shuyue Wang, Chao Wang, Yanxing Chen, Minming Zhang, Peiyu Huang
{"title":"Impact of sleep disruptions on gray matter structural covariance networks across the Alzheimer's disease continuum.","authors":"Xiao Luo, Kaicheng Li, Qingze Zeng, Xiaocao Liu, Jixuan Li, Xinyi Zhang, Siyan Zhong, Lingyun Liu, Shuyue Wang, Chao Wang, Yanxing Chen, Minming Zhang, Peiyu Huang","doi":"10.1002/dad2.70077","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study explores the impact of sleep disturbances on gray matter structural covariance networks (SCNs) across the Alzheimer's disease (AD) continuum.</p><p><strong>Methods: </strong>Amyloid-negative participants served as controls, whereas amyloid positive (A+) individuals were categorized into six groups based on cognitive status and sleep quality. SCNs for the default mode network (DMN), salience network (SN), and executive control network (ECN) were derived from T1-weighted magnetic resonance images.</p><p><strong>Results: </strong>In the DMN, increased structural associations were observed in cognitive unimpaired (CU) A+ and mild cognitive impairment (MCI) groups regardless of sleep quality, whereas AD with poor sleep (PS) showed a decrease and AD with normal sleep (NS) an increase. For the ECN, AD-NS showed increased and AD-PS showed reduced associations. In the SN, reduced associations were observed in CU A+ NS and MCI-NS, whereas AD-NS displayed increased associations; only AD-PS had decreased associations.</p><p><strong>Conclusion: </strong>Distinct SCN damage patterns between normal and poor sleepers provide insights into sleep disturbances in AD.</p><p><strong>Highlights: </strong>We delineated distinct patterns of structural covariance networks (SCN) impairment across the Alzheimer's disease (AD) continuum, uncovering significant disparities between individuals with normal sleep architecture and those afflicted by sleep disturbances.These observations underscore the pivotal importance of addressing sleep disruptions in AD therapeutics, providing a refined understanding of their detrimental impact on brain networks implicated in the disease.Our investigation epitomizes methodological precision by constructing an AD continuum using amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers to minimize diagnostic heterogeneity, further enhanced by a substantial cohort size that bolsters the robustness and generalizability of our findings.</p>","PeriodicalId":53226,"journal":{"name":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","volume":"17 1","pages":"e70077"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780114/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer''s and Dementia: Diagnosis, Assessment and Disease Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/dad2.70077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study explores the impact of sleep disturbances on gray matter structural covariance networks (SCNs) across the Alzheimer's disease (AD) continuum.

Methods: Amyloid-negative participants served as controls, whereas amyloid positive (A+) individuals were categorized into six groups based on cognitive status and sleep quality. SCNs for the default mode network (DMN), salience network (SN), and executive control network (ECN) were derived from T1-weighted magnetic resonance images.

Results: In the DMN, increased structural associations were observed in cognitive unimpaired (CU) A+ and mild cognitive impairment (MCI) groups regardless of sleep quality, whereas AD with poor sleep (PS) showed a decrease and AD with normal sleep (NS) an increase. For the ECN, AD-NS showed increased and AD-PS showed reduced associations. In the SN, reduced associations were observed in CU A+ NS and MCI-NS, whereas AD-NS displayed increased associations; only AD-PS had decreased associations.

Conclusion: Distinct SCN damage patterns between normal and poor sleepers provide insights into sleep disturbances in AD.

Highlights: We delineated distinct patterns of structural covariance networks (SCN) impairment across the Alzheimer's disease (AD) continuum, uncovering significant disparities between individuals with normal sleep architecture and those afflicted by sleep disturbances.These observations underscore the pivotal importance of addressing sleep disruptions in AD therapeutics, providing a refined understanding of their detrimental impact on brain networks implicated in the disease.Our investigation epitomizes methodological precision by constructing an AD continuum using amyloid positron emission tomography (PET) and cerebrospinal fluid (CSF) biomarkers to minimize diagnostic heterogeneity, further enhanced by a substantial cohort size that bolsters the robustness and generalizability of our findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
7.50%
发文量
101
审稿时长
8 weeks
期刊介绍: Alzheimer''s & Dementia: Diagnosis, Assessment & Disease Monitoring (DADM) is an open access, peer-reviewed, journal from the Alzheimer''s Association® that will publish new research that reports the discovery, development and validation of instruments, technologies, algorithms, and innovative processes. Papers will cover a range of topics interested in the early and accurate detection of individuals with memory complaints and/or among asymptomatic individuals at elevated risk for various forms of memory disorders. The expectation for published papers will be to translate fundamental knowledge about the neurobiology of the disease into practical reports that describe both the conceptual and methodological aspects of the submitted scientific inquiry. Published topics will explore the development of biomarkers, surrogate markers, and conceptual/methodological challenges. Publication priority will be given to papers that 1) describe putative surrogate markers that accurately track disease progression, 2) biomarkers that fulfill international regulatory requirements, 3) reports from large, well-characterized population-based cohorts that comprise the heterogeneity and diversity of asymptomatic individuals and 4) algorithmic development that considers multi-marker arrays (e.g., integrated-omics, genetics, biofluids, imaging, etc.) and advanced computational analytics and technologies.
期刊最新文献
Clinical performance of the fully automated Lumipulse plasma p-tau217 assay in mild cognitive impairment and mild dementia. Validity of one-time assessments for identifying prodromal Alzheimer's disease in adults with Down syndrome. Cognitive markers for the distinction between asymptomatic and prodromal Alzheimer's disease in Down syndrome: Correlations with volumetric brain changes. Natural language processing in Alzheimer's disease research: Systematic review of methods, data, and efficacy. Inflammation biomarkers and Alzheimer's disease: A pilot study using NULISAseq.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1