He Cai, Hao Wang, Zixin Bei, Dongkuan Zhou, Huanli Gao
{"title":"Biomimetic swarm fission driven algorithm with preassigned target subgroup size.","authors":"He Cai, Hao Wang, Zixin Bei, Dongkuan Zhou, Huanli Gao","doi":"10.1088/1748-3190/adaff5","DOIUrl":null,"url":null,"abstract":"<p><p>Inspired by killer whale hunting strategies, this study presents a biomimetic algorithm for controlled subgroup fission in swarms. The swarm agents adopt the classic social force model with some practical modifications. The proposed algorithm consists of three phases: cluster selection phase via a constrained K-means algorithm, driven phase with strategic agent movement, including center pushing, coordinated oscillation, and flank pushing by specialized driven agents, and judgment phase confirming subgroup separation using the Kruskal algorithm. Simulation results confirm the algorithm's high success rate and efficiency in subgroup division, demonstrating its potential for advancing swarm-based technologies.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/adaff5","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Inspired by killer whale hunting strategies, this study presents a biomimetic algorithm for controlled subgroup fission in swarms. The swarm agents adopt the classic social force model with some practical modifications. The proposed algorithm consists of three phases: cluster selection phase via a constrained K-means algorithm, driven phase with strategic agent movement, including center pushing, coordinated oscillation, and flank pushing by specialized driven agents, and judgment phase confirming subgroup separation using the Kruskal algorithm. Simulation results confirm the algorithm's high success rate and efficiency in subgroup division, demonstrating its potential for advancing swarm-based technologies.
期刊介绍:
Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology.
The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include:
Systems, designs and structure
Communication and navigation
Cooperative behaviour
Self-organizing biological systems
Self-healing and self-assembly
Aerial locomotion and aerospace applications of biomimetics
Biomorphic surface and subsurface systems
Marine dynamics: swimming and underwater dynamics
Applications of novel materials
Biomechanics; including movement, locomotion, fluidics
Cellular behaviour
Sensors and senses
Biomimetic or bioinformed approaches to geological exploration.