Lycopene supplementation reduces inflammatory, histopathological and DNA damage in an acute lung injury rabbit model.

Critical care science Pub Date : 2025-01-27 eCollection Date: 2025-01-01 DOI:10.62675/2965-2774.20250250
José Roberto Fioretto, Susiane Oliveira Klefens, Mário Ferreira Carpi, Marcos Aurélio Moraes, Rossano César Bonatto, Ana Lúcia Anjos Ferreira, Camila Renata Corrêa, Cilmery Suemi Kurokawa, Carlos Fernando Ronchi
{"title":"Lycopene supplementation reduces inflammatory, histopathological and DNA damage in an acute lung injury rabbit model.","authors":"José Roberto Fioretto, Susiane Oliveira Klefens, Mário Ferreira Carpi, Marcos Aurélio Moraes, Rossano César Bonatto, Ana Lúcia Anjos Ferreira, Camila Renata Corrêa, Cilmery Suemi Kurokawa, Carlos Fernando Ronchi","doi":"10.62675/2965-2774.20250250","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.</p><p><strong>Methods: </strong>Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline. The rabbits were randomly assigned to the control group and subjected to protective conventional mechanical ventilation (n = 5) without supplementation or the experimental group that was subjected to acute lung injury and provided conventional mechanical ventilation and high-frequency oscillatory ventilation with and without lycopene supplementation (n = 10 rabbits in each group). Lung oxidative stress and the inflammatory response were assessed based on the number of polymorphonuclear leukocytes in bronchoalveolar lavage fluid, DNA damage and pulmonary histological damage.</p><p><strong>Results: </strong>A significant worsening of oxygenation and a decrease in static lung compliance was noted in all groups after pulmonary injury induction (partial pressure of oxygen before 451.86 ± 68.54 and after 71 ± 19.27, p < 0.05). After 4 hours, the high-frequency oscillatory ventilation groups with and without lycopene supplementation as well as the group receiving protective conventional mechanical ventilation with lycopene supplementation showed significant oxygenation improvement compared with the protective conventional mechanical ventilation group without supplementation (partial pressure of oxygen of the group with mechanical ventilation without lycopene of 102 ± 42, of the group that received conventional protective mechanical ventilation with lycopene supplementation of 362 ± 38, of the high-frequency group without lycopene supplementation of 420 ± 28 and of the high-frequency group with lycopene supplementation of 422 ± 25; p < 0.05). Compared with rabbits not receiving supplementation, those in the groups that received protective conventional mechanical ventilation with lycopene supplementation and high-frequency oscillatory ventilation with lycopene supplementation had significantly less inflammation as well as less histological injury (p < 0.05). Compared with rabbits subjected to protective conventional mechanical ventilation, significantly lower DNA damage was observed in rabbits supplemented with lycopene (p < 0.05).</p><p><strong>Conclusion: </strong>Lycopene supplementation reduces inflammatory and histopathological lung injuries, regardless of the associated ventilatory mode. In addition, lycopene improved oxygenation and reduced DNA damage when protective conventional mechanical ventilation was used.</p>","PeriodicalId":72721,"journal":{"name":"Critical care science","volume":"37 ","pages":"e20250250"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11661679/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical care science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62675/2965-2774.20250250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To investigate the effects of lycopene supplementation on inflammation, lung histopathology and systemic DNA damage in an experimentally induced lung injury model, ventilated by conventional mechanical ventilation and high-frequency oscillatory ventilation, compared with a control group.

Methods: Fifty-five rabbits sampled by convenience were supplemented with 10mg/kg lycopene for 21 days prior to the experiment. Lung injury was induced by tracheal infusion of warm saline. The rabbits were randomly assigned to the control group and subjected to protective conventional mechanical ventilation (n = 5) without supplementation or the experimental group that was subjected to acute lung injury and provided conventional mechanical ventilation and high-frequency oscillatory ventilation with and without lycopene supplementation (n = 10 rabbits in each group). Lung oxidative stress and the inflammatory response were assessed based on the number of polymorphonuclear leukocytes in bronchoalveolar lavage fluid, DNA damage and pulmonary histological damage.

Results: A significant worsening of oxygenation and a decrease in static lung compliance was noted in all groups after pulmonary injury induction (partial pressure of oxygen before 451.86 ± 68.54 and after 71 ± 19.27, p < 0.05). After 4 hours, the high-frequency oscillatory ventilation groups with and without lycopene supplementation as well as the group receiving protective conventional mechanical ventilation with lycopene supplementation showed significant oxygenation improvement compared with the protective conventional mechanical ventilation group without supplementation (partial pressure of oxygen of the group with mechanical ventilation without lycopene of 102 ± 42, of the group that received conventional protective mechanical ventilation with lycopene supplementation of 362 ± 38, of the high-frequency group without lycopene supplementation of 420 ± 28 and of the high-frequency group with lycopene supplementation of 422 ± 25; p < 0.05). Compared with rabbits not receiving supplementation, those in the groups that received protective conventional mechanical ventilation with lycopene supplementation and high-frequency oscillatory ventilation with lycopene supplementation had significantly less inflammation as well as less histological injury (p < 0.05). Compared with rabbits subjected to protective conventional mechanical ventilation, significantly lower DNA damage was observed in rabbits supplemented with lycopene (p < 0.05).

Conclusion: Lycopene supplementation reduces inflammatory and histopathological lung injuries, regardless of the associated ventilatory mode. In addition, lycopene improved oxygenation and reduced DNA damage when protective conventional mechanical ventilation was used.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
期刊最新文献
Care of the chronic dialysis patient in the intensive care unit: a state-of-the-art review. Intensive Care Medicine in Portugal. Predictive factors for high-flow nasal cannula failure in patients with acute viral bronchiolitis admitted to the pediatric intensive care unit. A national survey of Intensive Care Medicine Services in Portugal: where we are and the road ahead. Analysis of the Functional Status Score for the Intensive Care Unit and its correlation with measures of muscle strength in critically ill patients during hospitalization in the intensive care unit.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1