Advancing cancer therapy with custom-built alternating electric field devices.

Isobel Jobson, Nguyen T N Vo, Edward Kujawinski, Chris Denning, Snow Stolnik, Veeren M Chauhan, Frankie Rawson
{"title":"Advancing cancer therapy with custom-built alternating electric field devices.","authors":"Isobel Jobson, Nguyen T N Vo, Edward Kujawinski, Chris Denning, Snow Stolnik, Veeren M Chauhan, Frankie Rawson","doi":"10.1186/s42234-024-00164-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research. Therefore, we sought to establish a custom-built alternating electric field device to investigate the effect of electrode design on the responsiveness of cancer cells to this therapy.</p><p><strong>Methods: </strong>A 96-well microtiter plate modified with an electrode array was fabricated to investigate its application as an in vitro alternating electric field device. This was initially performed with patient-derived GCE 31 and GIN 31 cell lines found in the core and invasive margin of the GBM tumour, respectively. We sought to establish the effect of the application of low-intensity (3 V/ cm) electric fields with an application duration of 4-48 h, using intermediate frequency (300 kHz) alternating currents (AC). To demonstrate that electric fields were entering the cell, GCE 31 and GIN 31 cells were treated with the inorganic, non-conductive zinc oxide (ZnO) nanoparticles (NP), previously demonstrated to enhance the efficacy of TTFs. After a 4-h exposure to NP, cells were then exposed to alternating electric fields or currents and their metabolic activity was assessed. To better understand how the position and morphology of cells can affect cell therapy responsiveness to alternating electric fields or currents, GBM results were compared to those from the semi-adherent brain tumour cell line, D425.</p><p><strong>Results: </strong>Contrary to previous findings, there was no significant difference between the GIN 31 and GCE 31 cells exposed to alternating electric fields or currents treated with or without NP compared to cells untreated and unstimulated. D425 cells exposed to alternating electric fields exhibited a pronounced metabolic increase (1.8-fold), while those exposed to alternating electric currents with or without ZnO had a reduced metabolism relative to the untreated control.</p><p><strong>Conclusions: </strong>The initial hypothesis for the lack of effect of electrical stimulation on the adherent cells was that, due to only a single pair of electrodes being used, the proportion of cells that were in the correct orientation for electric field effects was limited. However, the dramatic shift in cell behaviour of the semi-adherent cells shows that cell morphology plays an important role in the responsiveness of cancer cells to AC electric fields. This study highlights the lack of understanding of the complex mechanisms by which electric fields exert effects on cancer cells. We propose that, for the therapy to be enhanced for patients, research should first focus on the underlying mechanisms of action, specifically on how individual cancer cell types respond to this therapy.</p>","PeriodicalId":72363,"journal":{"name":"Bioelectronic medicine","volume":"11 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780810/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectronic medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42234-024-00164-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In glioblastoma (GBM) therapy research, tumour treating fields by the company Novocure™, have shown promise for increasing patient overall survival. When used with the chemotherapeutic agent temozolomide, they extend median survival by five months. However, there is a space to design alternative systems that will be amenable for wider use in current research. Therefore, we sought to establish a custom-built alternating electric field device to investigate the effect of electrode design on the responsiveness of cancer cells to this therapy.

Methods: A 96-well microtiter plate modified with an electrode array was fabricated to investigate its application as an in vitro alternating electric field device. This was initially performed with patient-derived GCE 31 and GIN 31 cell lines found in the core and invasive margin of the GBM tumour, respectively. We sought to establish the effect of the application of low-intensity (3 V/ cm) electric fields with an application duration of 4-48 h, using intermediate frequency (300 kHz) alternating currents (AC). To demonstrate that electric fields were entering the cell, GCE 31 and GIN 31 cells were treated with the inorganic, non-conductive zinc oxide (ZnO) nanoparticles (NP), previously demonstrated to enhance the efficacy of TTFs. After a 4-h exposure to NP, cells were then exposed to alternating electric fields or currents and their metabolic activity was assessed. To better understand how the position and morphology of cells can affect cell therapy responsiveness to alternating electric fields or currents, GBM results were compared to those from the semi-adherent brain tumour cell line, D425.

Results: Contrary to previous findings, there was no significant difference between the GIN 31 and GCE 31 cells exposed to alternating electric fields or currents treated with or without NP compared to cells untreated and unstimulated. D425 cells exposed to alternating electric fields exhibited a pronounced metabolic increase (1.8-fold), while those exposed to alternating electric currents with or without ZnO had a reduced metabolism relative to the untreated control.

Conclusions: The initial hypothesis for the lack of effect of electrical stimulation on the adherent cells was that, due to only a single pair of electrodes being used, the proportion of cells that were in the correct orientation for electric field effects was limited. However, the dramatic shift in cell behaviour of the semi-adherent cells shows that cell morphology plays an important role in the responsiveness of cancer cells to AC electric fields. This study highlights the lack of understanding of the complex mechanisms by which electric fields exert effects on cancer cells. We propose that, for the therapy to be enhanced for patients, research should first focus on the underlying mechanisms of action, specifically on how individual cancer cell types respond to this therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
8 weeks
期刊最新文献
In vivo electrophysiology recordings and computational modeling can predict octopus arm movement. Advice for translational neuroscience: move deliberately and build things. Advancing cancer therapy with custom-built alternating electric field devices. Next generation bioelectronic medicine: making the case for non-invasive closed-loop autonomic neuromodulation. Exploring the efficacy of Transcutaneous Auricular Vagus nerve stimulation (taVNS) in modulating local and systemic inflammation in experimental models of colitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1