Geosocial Media's Early Warning Capabilities Across US County-Level Political Clusters: Observational Study.

IF 3.5 Q1 HEALTH CARE SCIENCES & SERVICES JMIR infodemiology Pub Date : 2025-01-30 DOI:10.2196/58539
Dorian Arifi, Bernd Resch, Mauricio Santillana, Weihe Wendy Guan, Steffen Knoblauch, Sven Lautenbach, Thomas Jaenisch, Ivonne Morales, Clemens Havas
{"title":"Geosocial Media's Early Warning Capabilities Across US County-Level Political Clusters: Observational Study.","authors":"Dorian Arifi, Bernd Resch, Mauricio Santillana, Weihe Wendy Guan, Steffen Knoblauch, Sven Lautenbach, Thomas Jaenisch, Ivonne Morales, Clemens Havas","doi":"10.2196/58539","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises. However, previous studies on the early warning capabilities of geosocial media data have largely been constrained by coarse spatial resolutions or short temporal scopes, with limited understanding of how local political beliefs may influence these capabilities.</p><p><strong>Objective: </strong>This study aimed to assess how the epidemiological early warning capabilities of geosocial media posts for COVID-19 vary over time and across US counties with differing political beliefs.</p><p><strong>Methods: </strong>We classified US counties into 3 political clusters, democrat, republican, and swing counties, based on voting data from the last 6 federal election cycles. In these clusters, we analyzed the early warning capabilities of geosocial media posts across 6 consecutive COVID-19 waves (February 2020-April 2022). We specifically examined the temporal lag between geosocial media signals and surges in COVID-19 cases, measuring both the number of days by which the geosocial media signals preceded the surges in COVID-19 cases (temporal lag) and the correlation between their respective time series.</p><p><strong>Results: </strong>The early warning capabilities of geosocial media data differed across political clusters and COVID-19 waves. On average, geosocial media posts preceded COVID-19 cases by 21 days in republican counties compared with 14.6 days in democrat counties and 24.2 days in swing counties. In general, geosocial media posts were preceding COVID-19 cases in 5 out of 6 waves across all political clusters. However, we observed a decrease over time in the number of days that posts preceded COVID-19 cases, particularly in democrat and republican counties. Furthermore, a decline in signal strength and the impact of trending topics presented challenges for the reliability of the early warning signals.</p><p><strong>Conclusions: </strong>This study provides valuable insights into the strengths and limitations of geosocial media data as an epidemiological early warning tool, particularly highlighting how they can change across county-level political clusters. Thus, these findings indicate that future geosocial media based epidemiological early warning systems might benefit from accounting for political beliefs. In addition, the impact of declining geosocial media signal strength over time and the role of trending topics for signal reliability in early warning systems need to be assessed in future research.</p>","PeriodicalId":73554,"journal":{"name":"JMIR infodemiology","volume":"5 ","pages":"e58539"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR infodemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/58539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The novel coronavirus disease (COVID-19) sparked significant health concerns worldwide, prompting policy makers and health care experts to implement nonpharmaceutical public health interventions, such as stay-at-home orders and mask mandates, to slow the spread of the virus. While these interventions proved essential in controlling transmission, they also caused substantial economic and societal costs and should therefore be used strategically, particularly when disease activity is on the rise. In this context, geosocial media posts (posts with an explicit georeference) have been shown to provide a promising tool for anticipating moments of potential health care crises. However, previous studies on the early warning capabilities of geosocial media data have largely been constrained by coarse spatial resolutions or short temporal scopes, with limited understanding of how local political beliefs may influence these capabilities.

Objective: This study aimed to assess how the epidemiological early warning capabilities of geosocial media posts for COVID-19 vary over time and across US counties with differing political beliefs.

Methods: We classified US counties into 3 political clusters, democrat, republican, and swing counties, based on voting data from the last 6 federal election cycles. In these clusters, we analyzed the early warning capabilities of geosocial media posts across 6 consecutive COVID-19 waves (February 2020-April 2022). We specifically examined the temporal lag between geosocial media signals and surges in COVID-19 cases, measuring both the number of days by which the geosocial media signals preceded the surges in COVID-19 cases (temporal lag) and the correlation between their respective time series.

Results: The early warning capabilities of geosocial media data differed across political clusters and COVID-19 waves. On average, geosocial media posts preceded COVID-19 cases by 21 days in republican counties compared with 14.6 days in democrat counties and 24.2 days in swing counties. In general, geosocial media posts were preceding COVID-19 cases in 5 out of 6 waves across all political clusters. However, we observed a decrease over time in the number of days that posts preceded COVID-19 cases, particularly in democrat and republican counties. Furthermore, a decline in signal strength and the impact of trending topics presented challenges for the reliability of the early warning signals.

Conclusions: This study provides valuable insights into the strengths and limitations of geosocial media data as an epidemiological early warning tool, particularly highlighting how they can change across county-level political clusters. Thus, these findings indicate that future geosocial media based epidemiological early warning systems might benefit from accounting for political beliefs. In addition, the impact of declining geosocial media signal strength over time and the role of trending topics for signal reliability in early warning systems need to be assessed in future research.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
0.00%
发文量
0
期刊最新文献
Unveiling Topics and Emotions in Arabic Tweets Surrounding the COVID-19 Pandemic: Topic Modeling and Sentiment Analysis Approach. Assessment of Reliability and Validity of Celiac Disease-Related YouTube Videos: Content Analysis. Geosocial Media's Early Warning Capabilities Across US County-Level Political Clusters: Observational Study. How Patients With Cancer Use the Internet to Search for Health Information: Scenario-Based Think-Aloud Study. Unraveling the Use of Disinformation Hashtags by Social Bots During the COVID-19 Pandemic: Social Networks Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1