{"title":"Transcriptome analysis reveals molecular mechanism of Dosinia corrugata in response to acute heat stress.","authors":"Changsheng Gao, Hongtao Nie","doi":"10.1016/j.cbd.2025.101426","DOIUrl":null,"url":null,"abstract":"<p><p>This study seeks to explore the molecular regulatory mechanism within Dosinia corrugata in response to extreme high-temperature conditions, aiming to enhance the sustainable development of the D. corrugata aquaculture industry. To identify heat-responsive genes and elucidate adaptive mechanisms, we conducted transcriptional profiling of D. corrugata gills after 12 h and 24 h of acute heat stress. At 12 h and 24 h under acute heat stress, we detected 6842 and 1112 differentially expressed genes (DEGs), respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed that co-enriched pathways at both time points included Apoptosis-multiple species, Ubiquitin-mediated proteolysis, Tumor Necrosis Factor (TNF) signaling pathway, and Retinoic acid-inducible Gene I (RIG-I)-like receptor signaling pathway in response to acute heat stress. It is noteworthy that at 12 h of acute heat stress, metabolic pathways were significantly enriched, while at 24 h, immune-related pathways showed significant enrichment. Based on the co-enrichment pathways identified at both time points during acute heat stress (12 h and 24 h), we constructed a potential regulatory network for differentially expressed genes under heat stress. This study offers valuable insights into comprehending the potential molecular regulatory mechanisms that underlie D. corrugata's response to elevated temperatures.</p>","PeriodicalId":93949,"journal":{"name":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","volume":"54 ","pages":"101426"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative biochemistry and physiology. Part D, Genomics & proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cbd.2025.101426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study seeks to explore the molecular regulatory mechanism within Dosinia corrugata in response to extreme high-temperature conditions, aiming to enhance the sustainable development of the D. corrugata aquaculture industry. To identify heat-responsive genes and elucidate adaptive mechanisms, we conducted transcriptional profiling of D. corrugata gills after 12 h and 24 h of acute heat stress. At 12 h and 24 h under acute heat stress, we detected 6842 and 1112 differentially expressed genes (DEGs), respectively. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed that co-enriched pathways at both time points included Apoptosis-multiple species, Ubiquitin-mediated proteolysis, Tumor Necrosis Factor (TNF) signaling pathway, and Retinoic acid-inducible Gene I (RIG-I)-like receptor signaling pathway in response to acute heat stress. It is noteworthy that at 12 h of acute heat stress, metabolic pathways were significantly enriched, while at 24 h, immune-related pathways showed significant enrichment. Based on the co-enrichment pathways identified at both time points during acute heat stress (12 h and 24 h), we constructed a potential regulatory network for differentially expressed genes under heat stress. This study offers valuable insights into comprehending the potential molecular regulatory mechanisms that underlie D. corrugata's response to elevated temperatures.