A Hepatic Oxidative Metabolite of Palmatine Ameliorates DSS-Induced Ulcerative Colitis by Regulating Macrophage Polarization Through AMPK/NF-κB Pathway.

Qi-Ting Huang, Xing-Dong Ma, Jia-Na Zhang, Wei-Xiong Lin, Xue-Xia Shen, Zhuo-Wen Huang, Xia Zhang, Xiao-Yan Wu, Yao-Xing Dou, Zi-Ren Su, Ji-Yan Su, Yu-Cui Li, Yu-Hong Liu, You-Liang Xie, Rong-Feng Lin, Hai-Yang Huang, Qi-Hui Zhang, Xiao-Qi Huang
{"title":"A Hepatic Oxidative Metabolite of Palmatine Ameliorates DSS-Induced Ulcerative Colitis by Regulating Macrophage Polarization Through AMPK/NF-κB Pathway.","authors":"Qi-Ting Huang, Xing-Dong Ma, Jia-Na Zhang, Wei-Xiong Lin, Xue-Xia Shen, Zhuo-Wen Huang, Xia Zhang, Xiao-Yan Wu, Yao-Xing Dou, Zi-Ren Su, Ji-Yan Su, Yu-Cui Li, Yu-Hong Liu, You-Liang Xie, Rong-Feng Lin, Hai-Yang Huang, Qi-Hui Zhang, Xiao-Qi Huang","doi":"10.1142/S0192415X25500119","DOIUrl":null,"url":null,"abstract":"<p><p>Palmatine (PAL) and berberine are both classified as protoberberine alkaloids, derived from several traditional Chinese herbs such as <i>Coptis chinensis</i> Franch. and <i>Phellodendron</i> <i>chinense</i> Schneid. These compounds are extensively used in treating dysentery and colitis. PAL is one of the crucial quality markers for these plants in the Chinese Pharmacopoeia. A key metabolite of PAL, 8-Oxypalmatine (OPAL), shows favorable anti-inflammatory activity and better safety compared to PAL, though its mechanisms in ulcerative colitis (UC) are not fully understood. This study used a dextran sodium sulfate-induced colitis mouse model to explore OPAL's effects. The results indicated that OPAL provided superior therapeutic effects to those of PAL, alleviating colitis symptoms and reducing colon inflammation by modulating pro-inflammatory (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and anti-inflammatory (transforming growth factor-β and interleukin-10) cytokines. Additionally, OPAL helped rebuild the mucus barrier and upregulated tight junction proteins, thereby restoring intestinal integrity. Notably, OPAL inhibited the M1 macrophages infiltration while promoting M2 macrophage distribution in the colon. Its role in fostering M2 polarization and modulating the inflammatory cytokine profile was further confirmed <i>in</i> <i>vitro</i>. Importantly, the anti-inflammatory effects were primarily linked to AMP-activated protein kinase activation, which subsequently inhibited the nuclear factor-kappa B pathway. These findings highlight OPAL as a crucial active metabolite responsible for the therapeutic effects of PAL against UC, emphasizing its potential as a novel treatment for this condition.</p>","PeriodicalId":94221,"journal":{"name":"The American journal of Chinese medicine","volume":" ","pages":"1-23"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American journal of Chinese medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0192415X25500119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Palmatine (PAL) and berberine are both classified as protoberberine alkaloids, derived from several traditional Chinese herbs such as Coptis chinensis Franch. and Phellodendron chinense Schneid. These compounds are extensively used in treating dysentery and colitis. PAL is one of the crucial quality markers for these plants in the Chinese Pharmacopoeia. A key metabolite of PAL, 8-Oxypalmatine (OPAL), shows favorable anti-inflammatory activity and better safety compared to PAL, though its mechanisms in ulcerative colitis (UC) are not fully understood. This study used a dextran sodium sulfate-induced colitis mouse model to explore OPAL's effects. The results indicated that OPAL provided superior therapeutic effects to those of PAL, alleviating colitis symptoms and reducing colon inflammation by modulating pro-inflammatory (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and anti-inflammatory (transforming growth factor-β and interleukin-10) cytokines. Additionally, OPAL helped rebuild the mucus barrier and upregulated tight junction proteins, thereby restoring intestinal integrity. Notably, OPAL inhibited the M1 macrophages infiltration while promoting M2 macrophage distribution in the colon. Its role in fostering M2 polarization and modulating the inflammatory cytokine profile was further confirmed in vitro. Importantly, the anti-inflammatory effects were primarily linked to AMP-activated protein kinase activation, which subsequently inhibited the nuclear factor-kappa B pathway. These findings highlight OPAL as a crucial active metabolite responsible for the therapeutic effects of PAL against UC, emphasizing its potential as a novel treatment for this condition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hepatic Oxidative Metabolite of Palmatine Ameliorates DSS-Induced Ulcerative Colitis by Regulating Macrophage Polarization Through AMPK/NF-κB Pathway. Advancements in the Research of Astragalus membranaceus for the Treatment of Colorectal Cancer. Advances in Pharmacological Research on Icaritin: A Comprehensive Review. Gut Microbiota and Osteoarthritis: From Pathogenesis to Novel Therapeutic Opportunities. Pharmacokinetics and Biological Activities of Notoginsenoside R1: A Systematical Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1