Enhancing the Interfacial Stability of Thin Solid Polymer Electrolyte with Fluorinated Covalent Organic Framework Nanosheets.

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-02-12 Epub Date: 2025-01-31 DOI:10.1021/acs.nanolett.4c04325
Tao Liu, Yuan Zhong, Xiangyu Gao, Jun Jiang, Lingyi Jiang, Boying He, Yichen Liu, Zhiyi Ling, Hao Xu, Hongmin Guo, Jialiang Zhu, Bingqing Xu, Gen Zhang
{"title":"Enhancing the Interfacial Stability of Thin Solid Polymer Electrolyte with Fluorinated Covalent Organic Framework Nanosheets.","authors":"Tao Liu, Yuan Zhong, Xiangyu Gao, Jun Jiang, Lingyi Jiang, Boying He, Yichen Liu, Zhiyi Ling, Hao Xu, Hongmin Guo, Jialiang Zhu, Bingqing Xu, Gen Zhang","doi":"10.1021/acs.nanolett.4c04325","DOIUrl":null,"url":null,"abstract":"<p><p>Thin poly(ethylene oxide) (PEO)-based electrolytes with higher energy density face challenges such as low ionic conductivity, deterioration of lithium dendrites, and severe side reactions. To address these issues, a surface modification strategy was developed to enhance the electrode-electrolyte interfacial stability by introducing fluorinated covalent organic framework nanosheets (CONs) to construct a thin PEO-based electrolyte with a mere 14 μm thickness. Characterization and DFT calculation indicated that the CON layer promotes concentration enrichment and averaging of free Li<sup>+</sup> and mitigates side reactions at the interface. The electrode/electrolyte interface stability is significantly improved compared to the unmodified group (Li symmetric cells stabilized for more than 1000 h, and the full cell of LiFePO<sub>4</sub>∥Li exhibited a satisfactory capacity retention of 97.3% at 0.5 C after 150 cycles at 60 °C. This interface modification strategy provides a valuable reference for applying thin polymer electrolytes in high-energy solid-state lithium metal batteries.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":"2103-2111"},"PeriodicalIF":9.6000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04325","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Thin poly(ethylene oxide) (PEO)-based electrolytes with higher energy density face challenges such as low ionic conductivity, deterioration of lithium dendrites, and severe side reactions. To address these issues, a surface modification strategy was developed to enhance the electrode-electrolyte interfacial stability by introducing fluorinated covalent organic framework nanosheets (CONs) to construct a thin PEO-based electrolyte with a mere 14 μm thickness. Characterization and DFT calculation indicated that the CON layer promotes concentration enrichment and averaging of free Li+ and mitigates side reactions at the interface. The electrode/electrolyte interface stability is significantly improved compared to the unmodified group (Li symmetric cells stabilized for more than 1000 h, and the full cell of LiFePO4∥Li exhibited a satisfactory capacity retention of 97.3% at 0.5 C after 150 cycles at 60 °C. This interface modification strategy provides a valuable reference for applying thin polymer electrolytes in high-energy solid-state lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有较高能量密度的薄型聚环氧乙烷(PEO)基电解质面临着低离子电导率、锂枝晶退化和严重副反应等挑战。为了解决这些问题,我们开发了一种表面改性策略,通过引入含氟共价有机框架纳米片(CONs)来增强电极-电解质界面的稳定性,从而构建出厚度仅为 14 μm 的薄型 PEO 基电解质。表征和 DFT 计算表明,CON 层促进了游离 Li+ 的浓度富集和平均化,并减轻了界面上的副反应。与未改性组相比,电极/电解质界面的稳定性得到了显著提高(锂对称电池的稳定性超过了 1000 小时,而 LiFePO4∥Li 的全电池在 60 °C 下循环 150 次后,在 0.5 C 下的容量保持率达到了令人满意的 97.3%)。这种界面改性策略为在高能固态锂金属电池中应用薄聚合物电解质提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Lithography-Free Water Stable Conductive Polymer Nanowires A PTT-Induced Feed-Back Carbon Nanosystem for Enhanced Breast Cancer Therapy by Extracellular Matrix Remodeling The Intercorrelations of Mechanical Properties in Composite Solid Electrolytes and Their Decisive Role in Cells’ Cycling Life Discrete Ferroelectric Polarization Switching in Nanoscale Oxide-Channel Ferroelectric Field-Effect Transistors Small Molecule Drugs Triggered the Activation of Macrocycle Masked Proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1