Xiaoxuan Hu, Na Zhang, Yuxu Zhong, Tao Liu, Xiaoji Zhu
{"title":"Mechanisms of Apoptosis and Pulmonary Fibrosis Resulting From Sulfur Mustard-Induced Acute Pulmonary Injury in Rats.","authors":"Xiaoxuan Hu, Na Zhang, Yuxu Zhong, Tao Liu, Xiaoji Zhu","doi":"10.1177/10915818251315907","DOIUrl":null,"url":null,"abstract":"<p><p>Sulfur mustard (SM) is a highly toxic bifunctional alkylating agent that inflicts severe damage on the respiratory tract. Although numerous studies have examined the mechanisms underlying SM-induced pulmonary injury, the exact pathways involved remain unclear. This study aims to investigate an acute pulmonary injury model, with SM administered as a single intraperitoneal injection (8 mg/kg) or single intratracheal instillation (2 mg/kg) at equal toxicity doses (1LD50). The results revealed that epithelial cells in the alveolar septa of the intraperitoneal SM group exhibited a significantly higher expression of apoptotic markers, including pro-apoptotic protein Bax, caspase-3, and caspase-9 proteins, than those in the tracheal SM group. Conversely, the expression of the anti-apoptotic protein Bcl-2 was significantly lower in the intraperitoneal SM group than in the tracheal SM group, as confirmed by TUNEL staining and immunohistochemical staining. The intraperitoneal SM group exhibited markedly higher expression of fibrosis-related proteins, including MMP-2, MMP-9, TIMP-1, TIMP-2, collagen type I, collagen type III, TGF-β1, and Smad7, than the tracheal SM group. These markers, detected through immunohistochemical immunolabeling, indicate a more significant fibrotic response in the intraperitoneal group. In summary, this study demonstrates that intraperitoneal exposure to SM results in increased apoptosis, elevated expression of pro-apoptotic proteins, and fibrosis-related proteins in the alveolar epithelial cells compared with intratracheal exposure, even at equivalent toxicity levels. Our findings highlight the suitability of the intraperitoneal route for further investigation and identify apoptotic and fibrosis-related proteins as potential targets for intervention in SM-induced pulmonary injury.</p>","PeriodicalId":14432,"journal":{"name":"International Journal of Toxicology","volume":" ","pages":"10915818251315907"},"PeriodicalIF":1.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10915818251315907","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur mustard (SM) is a highly toxic bifunctional alkylating agent that inflicts severe damage on the respiratory tract. Although numerous studies have examined the mechanisms underlying SM-induced pulmonary injury, the exact pathways involved remain unclear. This study aims to investigate an acute pulmonary injury model, with SM administered as a single intraperitoneal injection (8 mg/kg) or single intratracheal instillation (2 mg/kg) at equal toxicity doses (1LD50). The results revealed that epithelial cells in the alveolar septa of the intraperitoneal SM group exhibited a significantly higher expression of apoptotic markers, including pro-apoptotic protein Bax, caspase-3, and caspase-9 proteins, than those in the tracheal SM group. Conversely, the expression of the anti-apoptotic protein Bcl-2 was significantly lower in the intraperitoneal SM group than in the tracheal SM group, as confirmed by TUNEL staining and immunohistochemical staining. The intraperitoneal SM group exhibited markedly higher expression of fibrosis-related proteins, including MMP-2, MMP-9, TIMP-1, TIMP-2, collagen type I, collagen type III, TGF-β1, and Smad7, than the tracheal SM group. These markers, detected through immunohistochemical immunolabeling, indicate a more significant fibrotic response in the intraperitoneal group. In summary, this study demonstrates that intraperitoneal exposure to SM results in increased apoptosis, elevated expression of pro-apoptotic proteins, and fibrosis-related proteins in the alveolar epithelial cells compared with intratracheal exposure, even at equivalent toxicity levels. Our findings highlight the suitability of the intraperitoneal route for further investigation and identify apoptotic and fibrosis-related proteins as potential targets for intervention in SM-induced pulmonary injury.
期刊介绍:
The International Journal of Toxicology publishes timely, peer-reviewed papers on current topics important to toxicologists. Six bi-monthly issues cover a wide range of topics, including contemporary issues in toxicology, safety assessments, novel approaches to toxicological testing, mechanisms of toxicity, biomarkers, and risk assessment. The Journal also publishes invited reviews on contemporary topics, and features articles based on symposia. In addition, supplemental issues are routinely published on various special topics, including three supplements devoted to contributions from the Cosmetic Review Expert Panel.