Fluorescence separation based on the spatiotemporal Gaussian mixture model for dynamic fluorescence molecular tomography.

IF 1.4 3区 物理与天体物理 Q3 OPTICS Journal of The Optical Society of America A-optics Image Science and Vision Pub Date : 2024-10-01 DOI:10.1364/JOSAA.530430
Yansong Wu, Zihao Chen, Hongbo Guo, Jintao Li, Huangjian Yi, Jingjing Yu, Xuelei He, Xiaowei He
{"title":"Fluorescence separation based on the spatiotemporal Gaussian mixture model for dynamic fluorescence molecular tomography.","authors":"Yansong Wu, Zihao Chen, Hongbo Guo, Jintao Li, Huangjian Yi, Jingjing Yu, Xuelei He, Xiaowei He","doi":"10.1364/JOSAA.530430","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic fluorescence molecular tomography (DFMT) is a promising imaging method that can furnish three-dimensional information regarding the absorption, distribution, and excretion of fluorescent probes in organisms. Achieving precise dynamic fluorescence images is the linchpin for realizing high-resolution, high-sensitivity, and high-precision tomography. Traditional preprocessing methods for dynamic fluorescence images often face challenges due to the non-specificity of fluorescent probes in living organisms, requiring complex imaging systems or biological interventions. These methods can result in significant processing errors, negatively impacting the imaging accuracy of DFMT. In this study, we present, a novel, to the best of our knowledge, strategy based on the spatiotemporal Gaussian mixture model (STGMM) for the processing of dynamic fluorescence images. The STGMM is primarily divided into four components: dataset construction, time domain prior information, spatial Gaussian fitting with time prior, and fluorescence separation. Numerical simulations and in vivo experimental results demonstrate that our proposed method significantly enhances image processing speed and accuracy compared to existing methods, especially when faced with fluorescence interference from other organs. Our research contributes to substantial reductions in time and processing complexity, providing robust support for dynamic imaging applications.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 10","pages":"1846-1855"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.530430","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic fluorescence molecular tomography (DFMT) is a promising imaging method that can furnish three-dimensional information regarding the absorption, distribution, and excretion of fluorescent probes in organisms. Achieving precise dynamic fluorescence images is the linchpin for realizing high-resolution, high-sensitivity, and high-precision tomography. Traditional preprocessing methods for dynamic fluorescence images often face challenges due to the non-specificity of fluorescent probes in living organisms, requiring complex imaging systems or biological interventions. These methods can result in significant processing errors, negatively impacting the imaging accuracy of DFMT. In this study, we present, a novel, to the best of our knowledge, strategy based on the spatiotemporal Gaussian mixture model (STGMM) for the processing of dynamic fluorescence images. The STGMM is primarily divided into four components: dataset construction, time domain prior information, spatial Gaussian fitting with time prior, and fluorescence separation. Numerical simulations and in vivo experimental results demonstrate that our proposed method significantly enhances image processing speed and accuracy compared to existing methods, especially when faced with fluorescence interference from other organs. Our research contributes to substantial reductions in time and processing complexity, providing robust support for dynamic imaging applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态荧光分子断层成像(DFMT)是一种前景广阔的成像方法,可提供有关荧光探针在生物体内吸收、分布和排泄的三维信息。获得精确的动态荧光图像是实现高分辨率、高灵敏度和高精度断层成像的关键。由于荧光探针在生物体内的非特异性,传统的动态荧光图像预处理方法往往面临挑战,需要复杂的成像系统或生物干预。这些方法会导致严重的处理错误,对 DFMT 的成像精度产生负面影响。在本研究中,我们提出了一种基于时空高斯混合物模型(STGMM)的处理动态荧光图像的新策略。STGMM 主要分为四个部分:数据集构建、时域先验信息、空间高斯拟合与时间先验以及荧光分离。数值模拟和体内实验结果表明,与现有方法相比,我们提出的方法显著提高了图像处理速度和准确性,尤其是在面对其他器官的荧光干扰时。我们的研究大大缩短了时间,降低了处理复杂度,为动态成像应用提供了强有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
期刊最新文献
Image formation through aspheric concave Fresnel-type mirrors. Propagation characteristics of a circular Airyprime Gaussian beam in a gradient refractive index medium. Imaging system high dynamic range colorimetric calibration method based on a digital chain. Measurement of plasma characteristic parameters of copper foil explosion using interferometry. On the label-free analysis of white blood cells by holographic quantitative phase imaging flow cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1