Huakui Hu, Jiangtao Ding, Weifeng Wu, Huajie Xu, Hailiang Li
{"title":"Hexagonal diffraction gratings generated by convolutional neural network-based deep learning for suppressing high-order diffractions.","authors":"Huakui Hu, Jiangtao Ding, Weifeng Wu, Huajie Xu, Hailiang Li","doi":"10.1364/JOSAA.531198","DOIUrl":null,"url":null,"abstract":"<p><p>The $\\pm 1$st order diffraction of gratings is widely used in spectral analysis. However, when the incident light is non-monochromatic, the higher-order diffractions generated by traditional diffraction gratings are always superimposed on the useful first-order diffraction, complicating subsequent spectral decoding. In this paper, single-order diffraction gratings with a sinusoidal transmittance, called hexagonal diffraction gratings (HDGs), are designed using a convolutional neural network based on deep learning algorithm. The trained convolutional neural network can accurately retrieve the structural parameters of the HDGs. Simulation and experimental results confirm that the HDGs can effectively suppress higher-order diffractions above the third order. The intensity of third-order diffraction is reduced from 20% of the first-order diffraction to less than that of the background. This higher-order diffraction suppression property of the HDGs is promising for applications in fields such as synchrotron radiation, astrophysics, and soft x-ray lasers.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 10","pages":"1987-1993"},"PeriodicalIF":1.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.531198","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
The $\pm 1$st order diffraction of gratings is widely used in spectral analysis. However, when the incident light is non-monochromatic, the higher-order diffractions generated by traditional diffraction gratings are always superimposed on the useful first-order diffraction, complicating subsequent spectral decoding. In this paper, single-order diffraction gratings with a sinusoidal transmittance, called hexagonal diffraction gratings (HDGs), are designed using a convolutional neural network based on deep learning algorithm. The trained convolutional neural network can accurately retrieve the structural parameters of the HDGs. Simulation and experimental results confirm that the HDGs can effectively suppress higher-order diffractions above the third order. The intensity of third-order diffraction is reduced from 20% of the first-order diffraction to less than that of the background. This higher-order diffraction suppression property of the HDGs is promising for applications in fields such as synchrotron radiation, astrophysics, and soft x-ray lasers.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.