Diagonal illumination scheme for Fourier ptychographic microscopy: resolution doubling and aliasing minimization.

IF 1.4 3区 物理与天体物理 Q3 OPTICS Journal of The Optical Society of America A-optics Image Science and Vision Pub Date : 2024-11-01 DOI:10.1364/JOSAA.532252
Yefeng Shu, Jiasong Sun, Yao Fan, Yao Jin, Qian Chen, Chao Zuo
{"title":"Diagonal illumination scheme for Fourier ptychographic microscopy: resolution doubling and aliasing minimization.","authors":"Yefeng Shu, Jiasong Sun, Yao Fan, Yao Jin, Qian Chen, Chao Zuo","doi":"10.1364/JOSAA.532252","DOIUrl":null,"url":null,"abstract":"<p><p>Fourier ptychographic microscopy (FPM) is a high-throughput computational imaging technology that enables wide-field and high-resolution imaging of samples with both amplitude and phase information. It holds great promise for quantitative phase imaging (QPI) on a large population of cells in parallel. However, detector undersampling leads to spectrum aliasing, which may significantly degenerate the resolution, efficiency, and quality of QPI, especially when an objective lens with a high space-bandwidth product is used. Here, we introduce a diagonal illumination scheme for FPM to minimize spectrum aliasing, enabling high-resolution QPI under a limited detector sampling rate. By orienting the LED illumination diagonally relative to the detector plane, the non-aliased sampling frequency of the raw image under oblique illumination can be maximized. This illumination scheme, when integrated with a color camera, facilitates single-shot, high-throughput QPI, effectively overcoming spectrum aliasing and achieving incoherent diffraction-limited resolution. Theoretical analysis, simulations, and experiments on resolution target and live cells validate the effectiveness and the proposed illumination scheme, offering a potential guideline for designing an FPM platform for high-speed QPI under the limited detector sampling rates.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"C62-C71"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.532252","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Fourier ptychographic microscopy (FPM) is a high-throughput computational imaging technology that enables wide-field and high-resolution imaging of samples with both amplitude and phase information. It holds great promise for quantitative phase imaging (QPI) on a large population of cells in parallel. However, detector undersampling leads to spectrum aliasing, which may significantly degenerate the resolution, efficiency, and quality of QPI, especially when an objective lens with a high space-bandwidth product is used. Here, we introduce a diagonal illumination scheme for FPM to minimize spectrum aliasing, enabling high-resolution QPI under a limited detector sampling rate. By orienting the LED illumination diagonally relative to the detector plane, the non-aliased sampling frequency of the raw image under oblique illumination can be maximized. This illumination scheme, when integrated with a color camera, facilitates single-shot, high-throughput QPI, effectively overcoming spectrum aliasing and achieving incoherent diffraction-limited resolution. Theoretical analysis, simulations, and experiments on resolution target and live cells validate the effectiveness and the proposed illumination scheme, offering a potential guideline for designing an FPM platform for high-speed QPI under the limited detector sampling rates.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
10.50%
发文量
417
审稿时长
3 months
期刊介绍: The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as: * Atmospheric optics * Clinical vision * Coherence and Statistical Optics * Color * Diffraction and gratings * Image processing * Machine vision * Physiological optics * Polarization * Scattering * Signal processing * Thin films * Visual optics Also: j opt soc am a.
期刊最新文献
Image formation through aspheric concave Fresnel-type mirrors. Propagation characteristics of a circular Airyprime Gaussian beam in a gradient refractive index medium. Imaging system high dynamic range colorimetric calibration method based on a digital chain. Measurement of plasma characteristic parameters of copper foil explosion using interferometry. On the label-free analysis of white blood cells by holographic quantitative phase imaging flow cytometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1