Zhisheng Zhou, Jingang Zhang, Qiang Fu, Yunfeng Nie
{"title":"Linearized wavefront sensing model for aberration retrieval from low-frequency Fourier coefficients.","authors":"Zhisheng Zhou, Jingang Zhang, Qiang Fu, Yunfeng Nie","doi":"10.1364/JOSAA.531449","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes and demonstrates a linearized model for phase diversity wavefront sensing, facilitating real-time processing and much less data required for training. Specifically, we find that the low-frequency Fourier coefficients of point spread function images are linearly proportional to pupil aberration coefficients under certain conditions. Simulation and experimental results show that the model can greatly reduce the processing time to several milliseconds by merely requiring hundreds of training samples while maintaining a comparatively high accuracy with state-of-the-art methods.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"C55-C61"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.531449","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes and demonstrates a linearized model for phase diversity wavefront sensing, facilitating real-time processing and much less data required for training. Specifically, we find that the low-frequency Fourier coefficients of point spread function images are linearly proportional to pupil aberration coefficients under certain conditions. Simulation and experimental results show that the model can greatly reduce the processing time to several milliseconds by merely requiring hundreds of training samples while maintaining a comparatively high accuracy with state-of-the-art methods.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.