P A Braam, J H M Ten Thije Boonkkamp, M J H Anthonissen, R Beltman, W L IJzerman
{"title":"Mathematical model for inverse freeform design of a point-to-point two-reflector system.","authors":"P A Braam, J H M Ten Thije Boonkkamp, M J H Anthonissen, R Beltman, W L IJzerman","doi":"10.1364/JOSAA.532313","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we discuss a mathematical model for inverse freeform design of an optical system with two reflectors in which light transfers from a point source to a point target. In this model, the angular light intensity emitted from the point source and illuminance arriving at the point target are specified by distributions. To determine the optical mapping and the shape of the reflectors, we use the optical path length and take energy conservation into account, through which we obtain a generated Jacobian equation. We express the system in both spherical and stereographic coordinates, and solve it using a sophisticated least-squares algorithm. Several examples illustrate the algorithm's capabilities to tackle complicated light distributions.</p>","PeriodicalId":17382,"journal":{"name":"Journal of The Optical Society of America A-optics Image Science and Vision","volume":"41 11","pages":"2156-2162"},"PeriodicalIF":1.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America A-optics Image Science and Vision","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/JOSAA.532313","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we discuss a mathematical model for inverse freeform design of an optical system with two reflectors in which light transfers from a point source to a point target. In this model, the angular light intensity emitted from the point source and illuminance arriving at the point target are specified by distributions. To determine the optical mapping and the shape of the reflectors, we use the optical path length and take energy conservation into account, through which we obtain a generated Jacobian equation. We express the system in both spherical and stereographic coordinates, and solve it using a sophisticated least-squares algorithm. Several examples illustrate the algorithm's capabilities to tackle complicated light distributions.
期刊介绍:
The Journal of the Optical Society of America A (JOSA A) is devoted to developments in any field of classical optics, image science, and vision. JOSA A includes original peer-reviewed papers on such topics as:
* Atmospheric optics
* Clinical vision
* Coherence and Statistical Optics
* Color
* Diffraction and gratings
* Image processing
* Machine vision
* Physiological optics
* Polarization
* Scattering
* Signal processing
* Thin films
* Visual optics
Also: j opt soc am a.