Endocrine disruptor (17 β-estradiol) removal by poly pyrrole-based molecularly imprinted polymer: kinetic, isotherms and thermodynamic studies

IF 5.7 3区 环境科学与生态学 Q1 WATER RESOURCES Applied Water Science Pub Date : 2025-02-01 DOI:10.1007/s13201-025-02373-w
Samaneh Mohebbi, Aram Dokht Khatibi, Davoud Balarak, Maryam Khashij, Edris Bazrafshan, Mohammad Mehralian
{"title":"Endocrine disruptor (17 β-estradiol) removal by poly pyrrole-based molecularly imprinted polymer: kinetic, isotherms and thermodynamic studies","authors":"Samaneh Mohebbi,&nbsp;Aram Dokht Khatibi,&nbsp;Davoud Balarak,&nbsp;Maryam Khashij,&nbsp;Edris Bazrafshan,&nbsp;Mohammad Mehralian","doi":"10.1007/s13201-025-02373-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the synthesis and characterization of the molecularly imprinted polymer (PPy-MIP) to remove 17<i>β</i>-Estradiol (E2) from aqueous solutions. The MIP was synthesized using a non-covalent procedure, incorporating the target compound, E2. To synthesis PPy-MIP, a mixture of 300 μl pyrrole and 50 ml distilled water was stirred for 30 min. After adding 3 g ferric chloride as an oxidant, the solution was mixed for 2 h and stored for 48–72 h. MIP capability is compared with a non-molecularly imprinted polymer (NIP) as a control. Various factors such as pH, contact time, dosage, temperature, and concentration were investigated to optimize the performance of the PPy-MIP. The structure of the MIP was confirmed using field emission scanning electron microscopy (FESEM), infrared spectrophotometric spectrum (FTIR), and X-ray diffraction (XRD). The efficiency of the PPy-MIP in removing E2 was obtained 99.97% at optimum condition; while, the NIP achieved a removal efficiency of 69.9%. Adsorption data were fitted with Langmuir isotherms (<i>R</i><sup>2</sup> 0.98) and pseudo-second-order kinetics (R<sup>2</sup> 0.99). The selectivity of the PPy-MIP toward similar compounds such as progesterone and cholesterol was also examined. To understand the adsorption process, thermodynamics, kinetics, and isotherm studies were performed. The MIP showed good reproducibility with only a slight decrease in removal efficiency after multiple absorption and reabsorption cycles. The adsorption of E2 by the MIP followed Langmuir adsorption isotherm and second-order adsorption kinetics. MIP was utilized to pre-concentrate and separate E2 in real samples (urine, blood, hospital wastewater, tap water). This method shows promise for efficient and selective removal of E2 from aqueous solutions.</p></div>","PeriodicalId":8374,"journal":{"name":"Applied Water Science","volume":"15 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13201-025-02373-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Water Science","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13201-025-02373-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the synthesis and characterization of the molecularly imprinted polymer (PPy-MIP) to remove 17β-Estradiol (E2) from aqueous solutions. The MIP was synthesized using a non-covalent procedure, incorporating the target compound, E2. To synthesis PPy-MIP, a mixture of 300 μl pyrrole and 50 ml distilled water was stirred for 30 min. After adding 3 g ferric chloride as an oxidant, the solution was mixed for 2 h and stored for 48–72 h. MIP capability is compared with a non-molecularly imprinted polymer (NIP) as a control. Various factors such as pH, contact time, dosage, temperature, and concentration were investigated to optimize the performance of the PPy-MIP. The structure of the MIP was confirmed using field emission scanning electron microscopy (FESEM), infrared spectrophotometric spectrum (FTIR), and X-ray diffraction (XRD). The efficiency of the PPy-MIP in removing E2 was obtained 99.97% at optimum condition; while, the NIP achieved a removal efficiency of 69.9%. Adsorption data were fitted with Langmuir isotherms (R2 0.98) and pseudo-second-order kinetics (R2 0.99). The selectivity of the PPy-MIP toward similar compounds such as progesterone and cholesterol was also examined. To understand the adsorption process, thermodynamics, kinetics, and isotherm studies were performed. The MIP showed good reproducibility with only a slight decrease in removal efficiency after multiple absorption and reabsorption cycles. The adsorption of E2 by the MIP followed Langmuir adsorption isotherm and second-order adsorption kinetics. MIP was utilized to pre-concentrate and separate E2 in real samples (urine, blood, hospital wastewater, tap water). This method shows promise for efficient and selective removal of E2 from aqueous solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Water Science
Applied Water Science WATER RESOURCES-
CiteScore
9.90
自引率
3.60%
发文量
268
审稿时长
13 weeks
期刊介绍:
期刊最新文献
Mathematical and experimental modeling the study of flow pattern at an abnormal stilling basin Mapping and assessing impacts of land use land cover and climate conditions on groundwater quality using RS & GIS Human health risk assessment for fluoride and nitrate contamination in drinking water of municipal and rural areas of Zahedan, Iran Reinforcing long lead time drought forecasting with a novel hybrid deep learning model: a case study in Iran Integration of positive matrix factorization and water quality models for pollution source identification and water quality enhancement in rivers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1