Weiyuan Zhang , Jiming Li , Jiayi Li , Sihang Xu , Lijie Zhang , Yang Wang , Jianping Huang
{"title":"Cloud heights retrieval from passive satellite measurements using lapse rate information","authors":"Weiyuan Zhang , Jiming Li , Jiayi Li , Sihang Xu , Lijie Zhang , Yang Wang , Jianping Huang","doi":"10.1016/j.rse.2025.114622","DOIUrl":null,"url":null,"abstract":"<div><div>Cloud top and base height (CTH and CBH) are essential in understanding the role of clouds on the weather and climate systems and improving radiation and precipitation simulations. However, inferring accurate cloud heights from passive satellite observations remains more challenging, especially for CBH. This study developed an effective and convenient method for estimating cloud heights for different cloud types on a global scale. The method is based on the mean lapse rate from surface to cloud top (<em>Γ</em><sub><em>ct</em></sub>), the lapse rate within (<em>Γ</em><sub><em>cb1</em></sub>) and below cloud (<em>Γ</em><sub><em>cb2</em></sub>), which are calculated from collocated active and passive satellite observations. The CTH and CBH can be easily derived based on cloud top temperature (CTT), surface temperature (ST), surface height (SH), <em>Γ</em><sub><em>ct</em></sub>, <em>Γ</em><sub><em>cb1</em></sub> and <em>Γ</em><sub><em>cb2</em></sub>. The lapse rate method was applied to polar-orbiting and geostationary passive satellites and the performances were evaluated using cloud heights measurements from CloudSat and CALIPSO satellite. Overall, our retrieval results can achieve high accuracy and stability in estimating both CTH and CBH. For example, our CTH results have significantly improved the retrieval accuracy, with mean bias error (MBE) is 0 km and R is 0.96, and the absolute bias error (MAE) and root mean square error (RMSE) are reduced from 1.12 km and 1.72 km to 0.85 km and 1.33 km, respectively, compared with the MODIS CTH product. Our CBH retrieval results based on MODIS CTT and ST also agree well with CloudSat and CALIPSO observations, the R is 0.91 and the MAE, MBE and RMSE are 0.73 km, 0 km and 1.26 km, respectively. The cloud geometric thickness derived from the cloud heights retrieval results also agrees well with the active satellite observations (MAE = 0.97 km, MBE = 0 km, RMSE = 1.44 km and <em>R</em> = 0.91). In addition, the good performance of cloud heights retrieval during night and for geostationary satellites can further illustrate the excellent accuracy and strong applicability of the lapse rate method. Specifically, compared with SatCORPS Himawari-8 product, the MAE and RMSE of CTH (CBH) are reduced by 41.5 % (44.2 %) and 39.4 % (36.6 %), respectively. These statistical results confirm that our method has comparable performance to other algorithms (e.g., machine learning and other empirical methods), in the meantime, exhibiting the advantages of simplicity and less input parameters. In addition, the lapse rate method can also be employed to provide a supplemental criterion on determining cloud layers from radiosonde data.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"319 ","pages":"Article 114622"},"PeriodicalIF":11.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425725000264","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud top and base height (CTH and CBH) are essential in understanding the role of clouds on the weather and climate systems and improving radiation and precipitation simulations. However, inferring accurate cloud heights from passive satellite observations remains more challenging, especially for CBH. This study developed an effective and convenient method for estimating cloud heights for different cloud types on a global scale. The method is based on the mean lapse rate from surface to cloud top (Γct), the lapse rate within (Γcb1) and below cloud (Γcb2), which are calculated from collocated active and passive satellite observations. The CTH and CBH can be easily derived based on cloud top temperature (CTT), surface temperature (ST), surface height (SH), Γct, Γcb1 and Γcb2. The lapse rate method was applied to polar-orbiting and geostationary passive satellites and the performances were evaluated using cloud heights measurements from CloudSat and CALIPSO satellite. Overall, our retrieval results can achieve high accuracy and stability in estimating both CTH and CBH. For example, our CTH results have significantly improved the retrieval accuracy, with mean bias error (MBE) is 0 km and R is 0.96, and the absolute bias error (MAE) and root mean square error (RMSE) are reduced from 1.12 km and 1.72 km to 0.85 km and 1.33 km, respectively, compared with the MODIS CTH product. Our CBH retrieval results based on MODIS CTT and ST also agree well with CloudSat and CALIPSO observations, the R is 0.91 and the MAE, MBE and RMSE are 0.73 km, 0 km and 1.26 km, respectively. The cloud geometric thickness derived from the cloud heights retrieval results also agrees well with the active satellite observations (MAE = 0.97 km, MBE = 0 km, RMSE = 1.44 km and R = 0.91). In addition, the good performance of cloud heights retrieval during night and for geostationary satellites can further illustrate the excellent accuracy and strong applicability of the lapse rate method. Specifically, compared with SatCORPS Himawari-8 product, the MAE and RMSE of CTH (CBH) are reduced by 41.5 % (44.2 %) and 39.4 % (36.6 %), respectively. These statistical results confirm that our method has comparable performance to other algorithms (e.g., machine learning and other empirical methods), in the meantime, exhibiting the advantages of simplicity and less input parameters. In addition, the lapse rate method can also be employed to provide a supplemental criterion on determining cloud layers from radiosonde data.
期刊介绍:
Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing.
The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques.
RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.