Polyethylene-poly(methyl acrylate) Block Copolymers from PACE-SARA ATRP: Utilizing Polyolefin Active Ester Exchange-Based Macroinitiators in Atom Transfer Radical Polymerization

IF 5.1 1区 化学 Q1 POLYMER SCIENCE Macromolecules Pub Date : 2025-01-30 DOI:10.1021/acs.macromol.4c02684
Khidong Kim, Jacobo Strong, Stephen Don Sarkar, Dung Nguyen, Huong Dau, D.A. Anwar Al-Aman, Sajjad Dadashi-Silab, Eva Harth, Krzysztof Matyjaszewski
{"title":"Polyethylene-poly(methyl acrylate) Block Copolymers from PACE-SARA ATRP: Utilizing Polyolefin Active Ester Exchange-Based Macroinitiators in Atom Transfer Radical Polymerization","authors":"Khidong Kim, Jacobo Strong, Stephen Don Sarkar, Dung Nguyen, Huong Dau, D.A. Anwar Al-Aman, Sajjad Dadashi-Silab, Eva Harth, Krzysztof Matyjaszewski","doi":"10.1021/acs.macromol.4c02684","DOIUrl":null,"url":null,"abstract":"Accessing a facile pathway to prepare polyolefin-polar block copolymers with low dispersity and high control remains a challenge due to the distinct polymerization pathways of the composing blocks. This study utilized the polyolefin active ester exchange, the PACE approach, as a viable solution. The PACE approach, using palladium-catalyst-based coordination-insertion polymerization, was combined with SARA ATRP (supplemental activator/reducing agent atom transfer radical polymerization). A single-chain-end active ester functionalized polyethylene (PE) was produced from an α-diimine Pd(II) hexafluoroisopropyl ester chelate complex, which facilitated a living polymerization of ethylene. Transesterification with 2-hydroxyethyl α-bromoisobutyrate (HOBIB) or 2-hydroxyethyl α-bromoisobutyramide (HOBIBA) formed α-bromoisobutyrate or α-bromoisobutyramide chain-end-functionalized polyethylene. The approach resulted in controlled synthesis of polymers with low dispersity (<i>Đ</i>), high initiation efficiency, and high reproducibility. Both the amide-linked and ester-linked macroinitiators showed &gt;90% initiation efficiency and <i>Đ</i> values of block copolymers as low as 1.05. This work demonstrated a successful combination of two living polymerization techniques, an insertion and controlled radical polymerization, unified in PACE-SARA ATRP, offering access to polyolefin-containing block copolymers with chemically distinct structures.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02684","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Accessing a facile pathway to prepare polyolefin-polar block copolymers with low dispersity and high control remains a challenge due to the distinct polymerization pathways of the composing blocks. This study utilized the polyolefin active ester exchange, the PACE approach, as a viable solution. The PACE approach, using palladium-catalyst-based coordination-insertion polymerization, was combined with SARA ATRP (supplemental activator/reducing agent atom transfer radical polymerization). A single-chain-end active ester functionalized polyethylene (PE) was produced from an α-diimine Pd(II) hexafluoroisopropyl ester chelate complex, which facilitated a living polymerization of ethylene. Transesterification with 2-hydroxyethyl α-bromoisobutyrate (HOBIB) or 2-hydroxyethyl α-bromoisobutyramide (HOBIBA) formed α-bromoisobutyrate or α-bromoisobutyramide chain-end-functionalized polyethylene. The approach resulted in controlled synthesis of polymers with low dispersity (Đ), high initiation efficiency, and high reproducibility. Both the amide-linked and ester-linked macroinitiators showed >90% initiation efficiency and Đ values of block copolymers as low as 1.05. This work demonstrated a successful combination of two living polymerization techniques, an insertion and controlled radical polymerization, unified in PACE-SARA ATRP, offering access to polyolefin-containing block copolymers with chemically distinct structures.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
期刊最新文献
Entropic Contribution to the Nonlinear Mechanical Properties of Thermoplastic Elastomers Perspective on the Processing and Functionalities of Solid-State Polyelectrolyte Complexes Near Infrared Absorption/Emission of B ← N Embedded Polymers with Aromatic Substituents: A Judicious Balance Among Absorption Coefficient, Emission Quantum Yield, and Photothermal Conversion Efficiency Single-Chain Slip-Spring Simulation for Entangled Nonconcatenated Ring Polymer Melts Impact of Size and Substitution Isomerism in Polycyclic Aromatic-Substituted Trialkoxysilanes on the Formation of Softenable Polysilsesquioxanes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1