Synergizing Interfacial Electric Field Regulation and In situ Robust Interphases for Stable Lithium Metal Batteries at High Currents

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-31 DOI:10.1002/anie.202501005
Weixiang Xie, Junxiong Wu, Xiaoyan Li, Zhengguang Song, Lijuan Tong, Yuhui Miao, Manxian Li, Xuan Li, Manxi Wang, Yue Chen, Xiaochuan Chen, Yuming Chen
{"title":"Synergizing Interfacial Electric Field Regulation and In situ Robust Interphases for Stable Lithium Metal Batteries at High Currents","authors":"Weixiang Xie,&nbsp;Junxiong Wu,&nbsp;Xiaoyan Li,&nbsp;Zhengguang Song,&nbsp;Lijuan Tong,&nbsp;Yuhui Miao,&nbsp;Manxian Li,&nbsp;Xuan Li,&nbsp;Manxi Wang,&nbsp;Yue Chen,&nbsp;Xiaochuan Chen,&nbsp;Yuming Chen","doi":"10.1002/anie.202501005","DOIUrl":null,"url":null,"abstract":"<p>Efficient cycling of lithium (Li) metal batteries (LMBs) under extremely high current conditions is critical for their practical applications. Here, we report a novel additive containing fluorine, nitrogen, and iodine elements (designated as FCS) to stabilize Li metal anodes in glyme-based ether electrolytes under high current conditions. Experimental results and molecular dynamics (MD) simulations demonstrate that the cation of FCS selectively adsorbs on the electrode surface, optimizing the inner Helmholtz plane (IHP) structure and effectively regulating the surface electric field, thereby promoting homogeneous Li deposition. Simultaneously, the preferential decomposition of the FCS produces a mechanically robust and ionically conductive solid electrolyte interphase (SEI) comprising LiF, Li<sub>3</sub>N, and LiI components. Consequently, with the FCS additive, Li||Cu cells demonstrate a remarkably average Coulombic efficiency (CE) of 98.12 % at an extremely high current of 20 mA cm<sup>−2</sup> over 400 cycles. Additionally, Li||SPAN cells maintain a reversible capacity of 1126 mAh g<sup>−1</sup> at 0.5 A g<sup>−1</sup> after 200 cycles. This work presents a new approach to simultaneously tune the Helmholtz plane and SEI using trace amounts of additive, paving the way for stable and efficient LMBs under high-current conditions.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 15","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202501005","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient cycling of lithium (Li) metal batteries (LMBs) under extremely high current conditions is critical for their practical applications. Here, we report a novel additive containing fluorine, nitrogen, and iodine elements (designated as FCS) to stabilize Li metal anodes in glyme-based ether electrolytes under high current conditions. Experimental results and molecular dynamics (MD) simulations demonstrate that the cation of FCS selectively adsorbs on the electrode surface, optimizing the inner Helmholtz plane (IHP) structure and effectively regulating the surface electric field, thereby promoting homogeneous Li deposition. Simultaneously, the preferential decomposition of the FCS produces a mechanically robust and ionically conductive solid electrolyte interphase (SEI) comprising LiF, Li3N, and LiI components. Consequently, with the FCS additive, Li||Cu cells demonstrate a remarkably average Coulombic efficiency (CE) of 98.12 % at an extremely high current of 20 mA cm−2 over 400 cycles. Additionally, Li||SPAN cells maintain a reversible capacity of 1126 mAh g−1 at 0.5 A g−1 after 200 cycles. This work presents a new approach to simultaneously tune the Helmholtz plane and SEI using trace amounts of additive, paving the way for stable and efficient LMBs under high-current conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协同界面电场调节和原位稳健相位,实现高电流下的稳定锂金属电池
锂(Li)金属电池(lmb)在极高电流条件下的高效循环是其实际应用的关键。在这里,我们报道了一种含有氟、氮和碘元素的新型添加剂(称为FCS),用于在高电流条件下稳定glyme - ether电解质中的锂金属阳极。实验结果和分子动力学(MD)模拟表明,FCS的阳离子选择性吸附在电极表面,优化了内部亥姆霍兹平面(IHP)结构,有效调节了表面电场,从而促进了锂的均匀沉积。同时,FCS的优先分解产生了由LiF, Li3N和LiI组成的机械坚固且离子导电的固体电解质界面(SEI)。因此,使用FCS添加剂,Li||Cu电池在20 mA cm−2的极高电流下,在400次循环中表现出98.12%的显著平均库仑效率(CE)。此外,Li||SPAN电池在0.5 a g−1下可在200次循环后保持1126 mAh g−1的可逆容量。这项工作提出了一种使用微量添加剂同时调整亥姆霍兹平面和SEI的新方法,为高电流条件下稳定高效的lmb铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Engineering Intralayer Anisotropy in Covalent Organic Frameworks Analyte‐Targeted Plasmonic Hotspots on Superlattice Mirror Enable Ultra‐Broad‐Range SERS Sensing of Acetylcholinesterase Non‐Radical Photocured 3D Printing of Liquid Crystal Elastomers Diazirines Beyond Photoaffinity Labeling: A Comprehensive Overview of Applications in Biological Sciences, Materials Chemistry, and NMR‐Spectroscopy A Fluorine-Free Chaotropic Electrolyte Promoting Zinc Peroxide Chemistry for Non-Alkaline Zinc-Air Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1