{"title":"The unity/diversity framework of executive functions: behavioral and neural evidence in older adults","authors":"Sheng-Ju Guo, Ping Wang, Li-Zhi Cao, Hui-Jie Li","doi":"10.1007/s11357-025-01542-8","DOIUrl":null,"url":null,"abstract":"<p>Executive functions (EFs), encompassing inhibition, shifting, and updating as three fundamental subdomains, are typically characterized by a unity/diversity construct. However, given the dedifferentiation trend observed in aging, it remains controversial whether the construct of EFs in older adults becomes unidimensional or maintains unity/diversity. This study aims to explore and validate the construct of EFs in older adults. At the behavioral level, we conducted confirmatory factor analysis on data from 222 older adults who completed six tasks specifically targeting inhibition, shifting, and updating. One unidimensional model and six unity/diversity models of EFs were evaluated. Our results indicated that the EFs of older adults demonstrated greater congruence with the unity/diversity construct. At neural level, thirty older adults completed three thematically consistent fMRI tasks, targeting three subdomains of EFs respectively. Multivariate pattern analysis showed that rostromedial prefrontal cortex robustly showed similar neural representation across different tasks (unity). Meanwhile, the three EF domains were encoded by distinct global neural representation and the lateral prefrontal cortex play a crucial role in classification (diversity). These findings underscore the unity/diversity framework of EFs in older adults and offer important insights for designing interventions aimed at improving EFs in this population.</p>","PeriodicalId":12730,"journal":{"name":"GeroScience","volume":"38 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GeroScience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11357-025-01542-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Executive functions (EFs), encompassing inhibition, shifting, and updating as three fundamental subdomains, are typically characterized by a unity/diversity construct. However, given the dedifferentiation trend observed in aging, it remains controversial whether the construct of EFs in older adults becomes unidimensional or maintains unity/diversity. This study aims to explore and validate the construct of EFs in older adults. At the behavioral level, we conducted confirmatory factor analysis on data from 222 older adults who completed six tasks specifically targeting inhibition, shifting, and updating. One unidimensional model and six unity/diversity models of EFs were evaluated. Our results indicated that the EFs of older adults demonstrated greater congruence with the unity/diversity construct. At neural level, thirty older adults completed three thematically consistent fMRI tasks, targeting three subdomains of EFs respectively. Multivariate pattern analysis showed that rostromedial prefrontal cortex robustly showed similar neural representation across different tasks (unity). Meanwhile, the three EF domains were encoded by distinct global neural representation and the lateral prefrontal cortex play a crucial role in classification (diversity). These findings underscore the unity/diversity framework of EFs in older adults and offer important insights for designing interventions aimed at improving EFs in this population.
GeroScienceMedicine-Complementary and Alternative Medicine
CiteScore
10.50
自引率
5.40%
发文量
182
期刊介绍:
GeroScience is a bi-monthly, international, peer-reviewed journal that publishes articles related to research in the biology of aging and research on biomedical applications that impact aging. The scope of articles to be considered include evolutionary biology, biophysics, genetics, genomics, proteomics, molecular biology, cell biology, biochemistry, endocrinology, immunology, physiology, pharmacology, neuroscience, and psychology.