Mojtaba Nazari;Anders Rosendal Korshøj;Naveed ur Rehman
{"title":"Jump Plus AM-FM Mode Decomposition","authors":"Mojtaba Nazari;Anders Rosendal Korshøj;Naveed ur Rehman","doi":"10.1109/TSP.2025.3535822","DOIUrl":null,"url":null,"abstract":"A novel approach for decomposing a nonstationary signal into amplitude- and frequency-modulated (AM-FM) oscillations and discontinuous (jump) components is proposed. Current nonstationary signal decomposition methods are designed to either obtain constituent AM-FM oscillatory modes or the discontinuous and residual components from the data, separately. Yet, many real-world signals of interest simultaneously exhibit both behaviors i.e., jumps and oscillations. Currently, no available method can extract jumps and AM-FM oscillatory components directly from the data. In our novel approach, we design and solve a variational optimization problem to accomplish this task. The optimization formulation includes a regularization term to minimize the bandwidth of all signal modes for effective oscillation modeling, and a prior for extracting the jump component. Our approach addresses the limitations of conventional AM-FM signal decomposition methods in extracting jumps and the limitations of existing jump extraction methods in decomposing multiscale oscillations. By employing an optimization framework that accounts for both multiscale oscillatory components and discontinuities, the proposed method shows superior performance compared to existing decomposition techniques. We demonstrate the effectiveness of our approach on synthetic, real-world, single-channel, and multivariate data, highlighting its utility in three specific applications: earth's electric field signals, electrocardiograms (ECG), and electroencephalograms (EEG).","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"73 ","pages":"1081-1093"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10869329/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
A novel approach for decomposing a nonstationary signal into amplitude- and frequency-modulated (AM-FM) oscillations and discontinuous (jump) components is proposed. Current nonstationary signal decomposition methods are designed to either obtain constituent AM-FM oscillatory modes or the discontinuous and residual components from the data, separately. Yet, many real-world signals of interest simultaneously exhibit both behaviors i.e., jumps and oscillations. Currently, no available method can extract jumps and AM-FM oscillatory components directly from the data. In our novel approach, we design and solve a variational optimization problem to accomplish this task. The optimization formulation includes a regularization term to minimize the bandwidth of all signal modes for effective oscillation modeling, and a prior for extracting the jump component. Our approach addresses the limitations of conventional AM-FM signal decomposition methods in extracting jumps and the limitations of existing jump extraction methods in decomposing multiscale oscillations. By employing an optimization framework that accounts for both multiscale oscillatory components and discontinuities, the proposed method shows superior performance compared to existing decomposition techniques. We demonstrate the effectiveness of our approach on synthetic, real-world, single-channel, and multivariate data, highlighting its utility in three specific applications: earth's electric field signals, electrocardiograms (ECG), and electroencephalograms (EEG).
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.