{"title":"Novel dual-targeting PROTAC degraders of GSK-3β and CDK5: A promising approach for pancreatic cancer treatment","authors":"Jayaprakash Neerasa, Bongsu Kim, Hunsuk Chung","doi":"10.1016/j.bmc.2025.118085","DOIUrl":null,"url":null,"abstract":"<div><div>Pancreatic cancer remains one of the most lethal malignancies, characterized by limited therapeutic options and poor prognoses. Here, we report the development of novel dual-targeting PROTAC (proteolysis-targeting chimera) compounds designed to concurrently degrade GSK-3β and CDK5. These bifunctional molecules were systematically designed by integrating three critical components: (1) a ligand that selectively binds GSK-3β and CDK5, (2) an E3 ligase-recruiting motif, and (3) an optimized linker to facilitate target engagement and proteasomal degradation. Our series of compounds (DBMG-01 through DBVR-PTC-02) demonstrated robust and selective target degradation in pancreatic cancer cell lines, achieving nanomolar DC<sub>50</sub> values. Among these, the lead compound DBVR-PTC-02 exhibited exceptional potency, with DC<sub>50</sub> values of 42 nM (D<sub>max</sub> = 90 %) for GSK-3β and 48 nM (D<sub>max</sub> = 88 %) for CDK5. DBVR-PTC-02 also displayed superior antiproliferative activity compared to single-target PROTACs and conventional kinase inhibitors, with an IC<sub>50</sub> of 1.81 ± 0.55 µM in pancreatic cancer cell viability assays. This study establishes a novel framework for dual-targeted protein degradation and highlights the therapeutic potential of DBVR-PTC-02 as a promising candidate for the treatment of pancreatic cancer.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"120 ","pages":"Article 118085"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625000264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic cancer remains one of the most lethal malignancies, characterized by limited therapeutic options and poor prognoses. Here, we report the development of novel dual-targeting PROTAC (proteolysis-targeting chimera) compounds designed to concurrently degrade GSK-3β and CDK5. These bifunctional molecules were systematically designed by integrating three critical components: (1) a ligand that selectively binds GSK-3β and CDK5, (2) an E3 ligase-recruiting motif, and (3) an optimized linker to facilitate target engagement and proteasomal degradation. Our series of compounds (DBMG-01 through DBVR-PTC-02) demonstrated robust and selective target degradation in pancreatic cancer cell lines, achieving nanomolar DC50 values. Among these, the lead compound DBVR-PTC-02 exhibited exceptional potency, with DC50 values of 42 nM (Dmax = 90 %) for GSK-3β and 48 nM (Dmax = 88 %) for CDK5. DBVR-PTC-02 also displayed superior antiproliferative activity compared to single-target PROTACs and conventional kinase inhibitors, with an IC50 of 1.81 ± 0.55 µM in pancreatic cancer cell viability assays. This study establishes a novel framework for dual-targeted protein degradation and highlights the therapeutic potential of DBVR-PTC-02 as a promising candidate for the treatment of pancreatic cancer.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.