EMILIN-1 Suppresses Cell Proliferation through Altered Cell Cycle Regulation in Head and Neck Squamous Cell Carcinoma.

IF 4.7 2区 医学 Q1 PATHOLOGY American Journal of Pathology Pub Date : 2025-01-30 DOI:10.1016/j.ajpath.2025.01.010
Pichaya Chanpanitkitchote, Jiratchaya Nuanpirom, Warut Pongsapich, Nithi Asavapanumas, Simone Mendler, Nadine Wiesmann, Juergen Brieger, Natini Jinawath
{"title":"EMILIN-1 Suppresses Cell Proliferation through Altered Cell Cycle Regulation in Head and Neck Squamous Cell Carcinoma.","authors":"Pichaya Chanpanitkitchote, Jiratchaya Nuanpirom, Warut Pongsapich, Nithi Asavapanumas, Simone Mendler, Nadine Wiesmann, Juergen Brieger, Natini Jinawath","doi":"10.1016/j.ajpath.2025.01.010","DOIUrl":null,"url":null,"abstract":"<p><p>Extracellular matrix (ECM) proteins play an important role in the pathological processes of tumor development and progression. Elastic microfibril interface located protein-1 (EMILIN-1), an ECM glycoprotein, has been linked to cell adhesion and migration. It was previously identified from head and neck squamous cell carcinoma (HNSCC) tissues that down-regulated EMILIN-1 is associated with an increased risk of secondary primary malignancy development in HNSCC and hypothesized that EMILIN-1 functions as a tumor suppressor in HNSCC. This study shows EMILIN-1 expression in HNSCC tissues is specific to the stromal area, and secreted-EMILIN-1 level is higher in fibroblasts isolated from HNSCC tissues than in HNSCC cells. EMILIN-1 overexpression decreased cell proliferation, migration, and invasion in FaDu and CAL27 cells. Knockdown of EMILIN-1 in HNSCC cancer-associated fibroblasts induced cell proliferation and migration. The conditioned medium from EMILIN-1 knockdown cancer-associated fibroblasts increased HNSCC cell proliferation, and the co-culture system enhanced cancer cell migration and invasion. RNA-sequencing analysis revealed that the cell cycle and aurora kinase signaling are the most significant enrichment pathways, confirmed at the protein level. Furthermore, using an in ovo chick chorioallantoic membrane model, overexpression of EMILIN-1 in FaDu cells reduced tumor size and Ki-67-positivity and increased cleaved caspase-3-positive cells. These findings suggest that EMILIN-1 suppresses HNSCC growth partly through the down-regulation of cell cycle and aurora kinase signaling pathways.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2025.01.010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular matrix (ECM) proteins play an important role in the pathological processes of tumor development and progression. Elastic microfibril interface located protein-1 (EMILIN-1), an ECM glycoprotein, has been linked to cell adhesion and migration. It was previously identified from head and neck squamous cell carcinoma (HNSCC) tissues that down-regulated EMILIN-1 is associated with an increased risk of secondary primary malignancy development in HNSCC and hypothesized that EMILIN-1 functions as a tumor suppressor in HNSCC. This study shows EMILIN-1 expression in HNSCC tissues is specific to the stromal area, and secreted-EMILIN-1 level is higher in fibroblasts isolated from HNSCC tissues than in HNSCC cells. EMILIN-1 overexpression decreased cell proliferation, migration, and invasion in FaDu and CAL27 cells. Knockdown of EMILIN-1 in HNSCC cancer-associated fibroblasts induced cell proliferation and migration. The conditioned medium from EMILIN-1 knockdown cancer-associated fibroblasts increased HNSCC cell proliferation, and the co-culture system enhanced cancer cell migration and invasion. RNA-sequencing analysis revealed that the cell cycle and aurora kinase signaling are the most significant enrichment pathways, confirmed at the protein level. Furthermore, using an in ovo chick chorioallantoic membrane model, overexpression of EMILIN-1 in FaDu cells reduced tumor size and Ki-67-positivity and increased cleaved caspase-3-positive cells. These findings suggest that EMILIN-1 suppresses HNSCC growth partly through the down-regulation of cell cycle and aurora kinase signaling pathways.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
期刊最新文献
The Involvement of Mitochondrial Dysfunction during the Development of Adenomyosis. Table of Contents Editorial Board Reviewer Acknowledgment Reinterpreting the True Cause and Nature of Unexpected Liver Lumps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1