Isolation of lignocellulosic biomass-degrading bacteria from Porcellio dilatatus gut-enriched cultures

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2025-02-01 DOI:10.1007/s00253-025-13420-6
Catarina Coelho, Lígia O. Martins, Igor Tiago
{"title":"Isolation of lignocellulosic biomass-degrading bacteria from Porcellio dilatatus gut-enriched cultures","authors":"Catarina Coelho,&nbsp;Lígia O. Martins,&nbsp;Igor Tiago","doi":"10.1007/s00253-025-13420-6","DOIUrl":null,"url":null,"abstract":"<p>The lignocellulosic biomass (LCB) is an attractive, sustainable, and environmentally friendly alternative to fossil sources to produce biofuel, biomaterials, and biochemicals. However, its recalcitrant and heterogenous structure challenges its biodegradation and valorization. The gut microbiome of soil invertebrate species has emerged as a rich source of LCB-degrading bacteria and enzymes in terrestrial ecosystems. The primary objective of this investigation was to identify the bacterial communities within the <i>Porcellio dilatatus</i> gut (<i>Crustacea: Isopods</i>), to obtain enriched cultures, and to identify bacterial isolates with LCB-degrading activity. A total of 112 enriched cultures were screened, all exhibiting xylanolytic activity. Among them, 94 displayed cellulolytic activity, 30 showed chitinolytic activity, and 21 demonstrated ligninolytic activity. Four enriched cultures were selected, and 128 bacteria with cellulolytic, xylanolytic, chitinolytic, or ligninolytic activity were isolated and taxonomically classified. The obtained results reinforce the potential of bacterial communities within the digestive tract of soil invertebrates as a valuable source of lignocellulose-degrading microorganisms. Thirty-one isolates underwent in-depth enzymatic characterization, and five were selected and functionally evaluated. An artificial bacterial consortium was constructed to assess the potential benefits of using consortia to achieve enhanced LCB degradation. The positive results of this proof-of-concept artificial consortium (PdG-AC) can be used in future applications and is a valuable tool for enzymatic and microbial consortia engineering by, e.g., changing growth conditions for enhanced LCB-degrading abilities.</p><p><i>• The gut microbiome of Porcellio dilatatus was characterized.</i></p><p><i>• Porcellio dilatatus gut hosts many lignocellulose-degrading bacteria.</i></p><p><i>• Developed an artificial bacterial consortium for lignocellulose degradation.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13420-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13420-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The lignocellulosic biomass (LCB) is an attractive, sustainable, and environmentally friendly alternative to fossil sources to produce biofuel, biomaterials, and biochemicals. However, its recalcitrant and heterogenous structure challenges its biodegradation and valorization. The gut microbiome of soil invertebrate species has emerged as a rich source of LCB-degrading bacteria and enzymes in terrestrial ecosystems. The primary objective of this investigation was to identify the bacterial communities within the Porcellio dilatatus gut (Crustacea: Isopods), to obtain enriched cultures, and to identify bacterial isolates with LCB-degrading activity. A total of 112 enriched cultures were screened, all exhibiting xylanolytic activity. Among them, 94 displayed cellulolytic activity, 30 showed chitinolytic activity, and 21 demonstrated ligninolytic activity. Four enriched cultures were selected, and 128 bacteria with cellulolytic, xylanolytic, chitinolytic, or ligninolytic activity were isolated and taxonomically classified. The obtained results reinforce the potential of bacterial communities within the digestive tract of soil invertebrates as a valuable source of lignocellulose-degrading microorganisms. Thirty-one isolates underwent in-depth enzymatic characterization, and five were selected and functionally evaluated. An artificial bacterial consortium was constructed to assess the potential benefits of using consortia to achieve enhanced LCB degradation. The positive results of this proof-of-concept artificial consortium (PdG-AC) can be used in future applications and is a valuable tool for enzymatic and microbial consortia engineering by, e.g., changing growth conditions for enhanced LCB-degrading abilities.

• The gut microbiome of Porcellio dilatatus was characterized.

• Porcellio dilatatus gut hosts many lignocellulose-degrading bacteria.

• Developed an artificial bacterial consortium for lignocellulose degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 1. Expansion of induced pluripotent stem cells under consideration of bioengineering aspects: part 2. Evolution of pollutant biodegradation Changes in a glycerol-degrading bacterial community in an upflow anaerobic reactor for 1,3-propanediol production Isolation of lignocellulosic biomass-degrading bacteria from Porcellio dilatatus gut-enriched cultures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1