Xanthomonas citri subsp. citri requires a polyketide cyclase to activate the type III secretion system for virulence.

IF 4 2区 生物学 Q2 MICROBIOLOGY BMC Microbiology Pub Date : 2025-02-01 DOI:10.1186/s12866-025-03749-3
Shuying Zhu, Siyu Wu, Yanmin Liu, Zaibao Zhang, Huasong Zou
{"title":"Xanthomonas citri subsp. citri requires a polyketide cyclase to activate the type III secretion system for virulence.","authors":"Shuying Zhu, Siyu Wu, Yanmin Liu, Zaibao Zhang, Huasong Zou","doi":"10.1186/s12866-025-03749-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Xanthomonas citri subsp. citri is the causal agent of citrus canker, which causes substantial losses in citrus production. Here, we report the role of a polyketide cyclase (PKC) on the virulence in X. citri subsp. citri.</p><p><strong>Methods: </strong>The structure of PKC was precisely predicted using Alphafold3. Promoter GUS fusion constructs and real-time quantitative reverse transcription (qRT-PCR) were employed to study the pattern of expression of the polyketide gene. A deletion mutation was created to explore the role of PKC in virulence and metabolic change.</p><p><strong>Results: </strong>The PKC was determined to have a signal peptide, a START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) domain, and a GyrI-like small molecule binding domain. The expression of the PKC gene was induced in planta, as well as under stress by CuSO<sub>4</sub> and SDS. An in-frame deletion mutation resulted in a loss of virulence on the citrus hosts, which was restored by the SRPBCC domain. Furthermore, there as a remarkable reduction in the expression of type III genes, such as hrpG and hrpX. In the mutant carrying the pkc deletion, ketoleucine and acetone cyanohydrin were downregulated, and four metabolites, including D-ribose, creatine, polyoxyethylene dioleate, and cohibin C, were upregulated.</p><p><strong>Conclusions: </strong>The overall data indicate that the PKC affects bacterial virulence by modulating the type III secretion system, possibly through the biosynthesis of particular metabolites.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"25 1","pages":"59"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786466/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-025-03749-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Xanthomonas citri subsp. citri is the causal agent of citrus canker, which causes substantial losses in citrus production. Here, we report the role of a polyketide cyclase (PKC) on the virulence in X. citri subsp. citri.

Methods: The structure of PKC was precisely predicted using Alphafold3. Promoter GUS fusion constructs and real-time quantitative reverse transcription (qRT-PCR) were employed to study the pattern of expression of the polyketide gene. A deletion mutation was created to explore the role of PKC in virulence and metabolic change.

Results: The PKC was determined to have a signal peptide, a START/RHO_alpha_C/PITP/Bet_v1/CoxG/CalC (SRPBCC) domain, and a GyrI-like small molecule binding domain. The expression of the PKC gene was induced in planta, as well as under stress by CuSO4 and SDS. An in-frame deletion mutation resulted in a loss of virulence on the citrus hosts, which was restored by the SRPBCC domain. Furthermore, there as a remarkable reduction in the expression of type III genes, such as hrpG and hrpX. In the mutant carrying the pkc deletion, ketoleucine and acetone cyanohydrin were downregulated, and four metabolites, including D-ribose, creatine, polyoxyethylene dioleate, and cohibin C, were upregulated.

Conclusions: The overall data indicate that the PKC affects bacterial virulence by modulating the type III secretion system, possibly through the biosynthesis of particular metabolites.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
期刊最新文献
NagPIBAF upregulation and ompO downregulation compromise oxidative stress tolerance of Stenotrophomonas maltophilia. Diversity of sulfur cycling halophiles within the Salton Sea, California's largest lake. Prospecting cellulolytic bacteria from white grubs (Holotrichia serrata (F.) and Leucopholis coneophora Burmeister) native to Karnataka region. Biochemical, coagulation, and platelet count profiles among Schistosoma mansoni infected patients attending at selected Dembiya health institutions, Northwest Ethiopia. Improved protocols for isolation of Mycobacterium ulcerans from clinical samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1