Wang Yan , Ge Limin , Sun Zhizhong , Cao Zidong , Qiu Shijun
{"title":"Altered individual-based morphological brain network in type 2 diabetes mellitus","authors":"Wang Yan , Ge Limin , Sun Zhizhong , Cao Zidong , Qiu Shijun","doi":"10.1016/j.brainresbull.2025.111228","DOIUrl":null,"url":null,"abstract":"<div><div>Type 2 diabetes mellitus (T2DM) is recognized as a risk factor for cognitive decline, potentially linked to disrupted network connectivity. However, few previous studies have examined individual-based morphological brain networks in T2DM and their association with clinical characteristics. In our study, we enrolled 123 patients with T2DM and 91 healthy controls (HC). We constructed the networks using symmetric Kullback–Leibler (KL) divergence-based similarity (KLS) and calculated various global and nodal metrics based on graph theory to describe the topological properties of the networks. Firstly, T2DM exhibited increased nodal degree in the left para-hippocampus, left amygdala, left precuneus, bilateral putamen, and right inferior temporal gyrus, and the concentrations of glycosylated hemoglobin (HbA1c) were positively correlated with the nodal degree of the left precuneus. Secondly, we identified hypo-connected and hyper-connected subnetworks, primarily involved with reward circuits and attention network, respectively. Lastly, altered morphological connectivity (MC) was linked to cognitive performance, and the aforementioned subnetworks may serve as predictors of cognitive performance. In conclusion, this study provided neuroimaging evidence for understanding cognitive changes by analyzing the properties and connections of individual-based morphological brain networks (MBNs) in T2DM patients.</div></div>","PeriodicalId":9302,"journal":{"name":"Brain Research Bulletin","volume":"222 ","pages":"Article 111228"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Research Bulletin","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0361923025000401","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a risk factor for cognitive decline, potentially linked to disrupted network connectivity. However, few previous studies have examined individual-based morphological brain networks in T2DM and their association with clinical characteristics. In our study, we enrolled 123 patients with T2DM and 91 healthy controls (HC). We constructed the networks using symmetric Kullback–Leibler (KL) divergence-based similarity (KLS) and calculated various global and nodal metrics based on graph theory to describe the topological properties of the networks. Firstly, T2DM exhibited increased nodal degree in the left para-hippocampus, left amygdala, left precuneus, bilateral putamen, and right inferior temporal gyrus, and the concentrations of glycosylated hemoglobin (HbA1c) were positively correlated with the nodal degree of the left precuneus. Secondly, we identified hypo-connected and hyper-connected subnetworks, primarily involved with reward circuits and attention network, respectively. Lastly, altered morphological connectivity (MC) was linked to cognitive performance, and the aforementioned subnetworks may serve as predictors of cognitive performance. In conclusion, this study provided neuroimaging evidence for understanding cognitive changes by analyzing the properties and connections of individual-based morphological brain networks (MBNs) in T2DM patients.
期刊介绍:
The Brain Research Bulletin (BRB) aims to publish novel work that advances our knowledge of molecular and cellular mechanisms that underlie neural network properties associated with behavior, cognition and other brain functions during neurodevelopment and in the adult. Although clinical research is out of the Journal''s scope, the BRB also aims to publish translation research that provides insight into biological mechanisms and processes associated with neurodegeneration mechanisms, neurological diseases and neuropsychiatric disorders. The Journal is especially interested in research using novel methodologies, such as optogenetics, multielectrode array recordings and life imaging in wild-type and genetically-modified animal models, with the goal to advance our understanding of how neurons, glia and networks function in vivo.