{"title":"PRMT5 Inhibition Enhances Therapeutic Efficacy of Cisplatin via Mediating miR-29b-3p-Mcl-1 Expression in Lung Adenocarcinoma.","authors":"Haichao Li, Jiangjiang Fan, Weiwei Shen, Yong Zhang, Ximing Zhu, Pei Li, Zhongping Gu, Pengyu Jing","doi":"10.1002/cbin.12278","DOIUrl":null,"url":null,"abstract":"<p><p>Cisplatin is one of the front-line therapeutic agents used to treat cancers, while drug resistance is a great obstacle to anti-tumor efficiency. Protein arginine methyltransferase 5 (PRMT5) has been identified as a promoter of tumorigenesis, motility, and invasion. Inhibiting PRMT5 reduced hypoxia-induced carboplatin resistance in lung adenocarcinoma (LUAD). However, the specific relationship between PRMT5 and cisplatin (CDDP) warrants further investigation. Our research revealed that PRMT5 inhibitor C9 enhanced CDDP chemosensitivity by suppressing proliferation and promoting apoptosis in LUAD cells. Through examining pro-apoptotic proteins regulated by PRMT5, we identified that Mcl-1 played a significant role in PRMT5-mediated CDDP chemosensitivity. Furthermore, PRMT5 regulated Mcl-1 expression through mediating miR-29b-3p. In vivo, our research presented that C9 increased CDDP chemosensitivity in LUAD xenografts. All in all, our data raised an interesting possibility that epigenetic reprogramming was associated with chemosensitivity. PRMT5 inhibitor C9 improved CDDP effectiveness in LUAD cells by inhibiting Mcl-1 expression via miR-29b-3p, thereby modulating cellular proliferation and apoptosis.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbin.12278","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cisplatin is one of the front-line therapeutic agents used to treat cancers, while drug resistance is a great obstacle to anti-tumor efficiency. Protein arginine methyltransferase 5 (PRMT5) has been identified as a promoter of tumorigenesis, motility, and invasion. Inhibiting PRMT5 reduced hypoxia-induced carboplatin resistance in lung adenocarcinoma (LUAD). However, the specific relationship between PRMT5 and cisplatin (CDDP) warrants further investigation. Our research revealed that PRMT5 inhibitor C9 enhanced CDDP chemosensitivity by suppressing proliferation and promoting apoptosis in LUAD cells. Through examining pro-apoptotic proteins regulated by PRMT5, we identified that Mcl-1 played a significant role in PRMT5-mediated CDDP chemosensitivity. Furthermore, PRMT5 regulated Mcl-1 expression through mediating miR-29b-3p. In vivo, our research presented that C9 increased CDDP chemosensitivity in LUAD xenografts. All in all, our data raised an interesting possibility that epigenetic reprogramming was associated with chemosensitivity. PRMT5 inhibitor C9 improved CDDP effectiveness in LUAD cells by inhibiting Mcl-1 expression via miR-29b-3p, thereby modulating cellular proliferation and apoptosis.
期刊介绍:
Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect.
These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.