{"title":"Nuclear-localized HKDC1 promotes hepatocellular carcinoma through phosphorylating RBBP5 to upregulate H3K4me3.","authors":"Ling Ye, Shengqi Shen, Qiankun Mao, Hui Lu, Haiying Liu, Pinggen Zhang, Zetan Jiang, Wenhao Ma, Yuchen Sun, Yiyang Chu, Zilong Zhou, Rui Liu, Jian Li, Shi-Ting Li, Ping Gao, Huafeng Zhang","doi":"10.1016/j.celrep.2025.115250","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic enzymes play significant roles in the pathogenesis of various cancers through both canonical and noncanonical functions. Hexokinase domain-containing protein 1 (HKDC1) functions beyond glucose metabolism, but its underlying mechanisms in tumorigenesis are not fully understood. Here, we demonstrate that nuclear-localized HKDC1 acts as a protein kinase to promote hepatocellular carcinoma (HCC) cell proliferation. Mechanistically, HKDC1 phosphorylates RB binding protein 5 (RBBP5) at Ser497, which is crucial for MLL1 complex assembly and subsequent histone H3 lysine 4 trimethylation (H3K4me3) modification. This leads to the transcriptional activation of mitosis-related genes, thereby driving cell cycle progression and proliferation. Notably, targeting HKDC1's protein kinase activity, but not its HK activity, blocks RBBP5 phosphorylation and suppresses tumor growth. Clinical analysis further reveals that RBBP5 phosphorylation positively correlates with HKDC1 levels and poor HCC prognosis. These findings highlight the protein kinase function of HKDC1 in the activation of H3K4me3, gene expression, and HCC progression.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115250"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115250","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic enzymes play significant roles in the pathogenesis of various cancers through both canonical and noncanonical functions. Hexokinase domain-containing protein 1 (HKDC1) functions beyond glucose metabolism, but its underlying mechanisms in tumorigenesis are not fully understood. Here, we demonstrate that nuclear-localized HKDC1 acts as a protein kinase to promote hepatocellular carcinoma (HCC) cell proliferation. Mechanistically, HKDC1 phosphorylates RB binding protein 5 (RBBP5) at Ser497, which is crucial for MLL1 complex assembly and subsequent histone H3 lysine 4 trimethylation (H3K4me3) modification. This leads to the transcriptional activation of mitosis-related genes, thereby driving cell cycle progression and proliferation. Notably, targeting HKDC1's protein kinase activity, but not its HK activity, blocks RBBP5 phosphorylation and suppresses tumor growth. Clinical analysis further reveals that RBBP5 phosphorylation positively correlates with HKDC1 levels and poor HCC prognosis. These findings highlight the protein kinase function of HKDC1 in the activation of H3K4me3, gene expression, and HCC progression.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.