Normalization of tumor vasculature by imiquimod: proposal for a new anticancer therapeutic indication for a TLR7 agonist.

IF 4.6 2区 医学 Q2 IMMUNOLOGY Cancer Immunology, Immunotherapy Pub Date : 2025-02-01 DOI:10.1007/s00262-025-03943-2
Jarosz-Biej Magdalena, Czapla Justyna, Ciepła Joanna, Smolarczyk Ryszard, Drzyzga Alina, Sprus-Lipka Dorota, Pilny Ewelina, Matuszczak Sybilla, Cichoń Tomasz
{"title":"Normalization of tumor vasculature by imiquimod: proposal for a new anticancer therapeutic indication for a TLR7 agonist.","authors":"Jarosz-Biej Magdalena, Czapla Justyna, Ciepła Joanna, Smolarczyk Ryszard, Drzyzga Alina, Sprus-Lipka Dorota, Pilny Ewelina, Matuszczak Sybilla, Cichoń Tomasz","doi":"10.1007/s00262-025-03943-2","DOIUrl":null,"url":null,"abstract":"<p><p>Imiquimod (IMQ), a drug from aminoquinoline group, is the toll-like receptor 7 (TLR7) agonist. It acts as an immunostimulant and radio-sensitizing agent. IMQ stimulates both innate and adaptive immune response. Despite studies conducted, there are no unambiguous data showing how IMQ affects the condition of tumor blood vessels. Tumor vasculature plays the main role in tumor progression. Formation of abnormal blood vessels increases area of hypoxia which recruits suppressor cells, blocks tumor infiltration by CD8<sup>+</sup> T lymphocytes, inhibits efficacy of chemoterapeutic drug and leads to cancer relapse. Normalization is a type of therapy targeted at abnormal tumor blood vessels. Here, we demonstrated that 50 µg of IMQ inhibits the growth of melanoma tumors more efficiently, compared to other tested doses and the control group. Dose escalation did not improve the therapeutic antitumor potential of TLR7 agonist. A dose of 50 µg of IMQ most effectively reduced tumor blood vessel density. Imiquimod normalized tumor vasculature both structurally (by reducing vessel tortuosity and increasing pericyte coverage) and functionally (by improving tumor perfusion) in a dose-dependent manner. Hypoxia regions in tumors of treated mice were significantly reduced after IMQ administration. A dose of 50 µg of IMQ had also the greatest impact on the changes in tumor-infiltrating T lymphocytes levels. TLR7 agonist inhibited angiogenesis in treated mice. Functional vascular normalization by IMQ increases the effectiveness of low dose of doxorubicin. Higher dose of IMQ showed worse effects than lower doses including decreased tumor perfusion, increased tumor hypoxia and immunosuppression. This knowledge may help to optimize the combination of the selected IMQ dose with e.g. chemotherapy or radiotherapy to elicit synergistic effect in cancer treatment. To conclude, we outline IMQ repurposing as a vascular normalizing agent. Our research results may contribute to expanding the therapeutic indications for the use of IMQ in anticancer therapy in the future.</p>","PeriodicalId":9595,"journal":{"name":"Cancer Immunology, Immunotherapy","volume":"74 3","pages":"90"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Immunology, Immunotherapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00262-025-03943-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Imiquimod (IMQ), a drug from aminoquinoline group, is the toll-like receptor 7 (TLR7) agonist. It acts as an immunostimulant and radio-sensitizing agent. IMQ stimulates both innate and adaptive immune response. Despite studies conducted, there are no unambiguous data showing how IMQ affects the condition of tumor blood vessels. Tumor vasculature plays the main role in tumor progression. Formation of abnormal blood vessels increases area of hypoxia which recruits suppressor cells, blocks tumor infiltration by CD8+ T lymphocytes, inhibits efficacy of chemoterapeutic drug and leads to cancer relapse. Normalization is a type of therapy targeted at abnormal tumor blood vessels. Here, we demonstrated that 50 µg of IMQ inhibits the growth of melanoma tumors more efficiently, compared to other tested doses and the control group. Dose escalation did not improve the therapeutic antitumor potential of TLR7 agonist. A dose of 50 µg of IMQ most effectively reduced tumor blood vessel density. Imiquimod normalized tumor vasculature both structurally (by reducing vessel tortuosity and increasing pericyte coverage) and functionally (by improving tumor perfusion) in a dose-dependent manner. Hypoxia regions in tumors of treated mice were significantly reduced after IMQ administration. A dose of 50 µg of IMQ had also the greatest impact on the changes in tumor-infiltrating T lymphocytes levels. TLR7 agonist inhibited angiogenesis in treated mice. Functional vascular normalization by IMQ increases the effectiveness of low dose of doxorubicin. Higher dose of IMQ showed worse effects than lower doses including decreased tumor perfusion, increased tumor hypoxia and immunosuppression. This knowledge may help to optimize the combination of the selected IMQ dose with e.g. chemotherapy or radiotherapy to elicit synergistic effect in cancer treatment. To conclude, we outline IMQ repurposing as a vascular normalizing agent. Our research results may contribute to expanding the therapeutic indications for the use of IMQ in anticancer therapy in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
1.70%
发文量
207
审稿时长
1 months
期刊介绍: Cancer Immunology, Immunotherapy has the basic aim of keeping readers informed of the latest research results in the fields of oncology and immunology. As knowledge expands, the scope of the journal has broadened to include more of the progress being made in the areas of biology concerned with biological response modifiers. This helps keep readers up to date on the latest advances in our understanding of tumor-host interactions. The journal publishes short editorials including "position papers," general reviews, original articles, and short communications, providing a forum for the most current experimental and clinical advances in tumor immunology.
期刊最新文献
Targeting BCMA in multiple myeloma: designs, challenges, and future directions. The profiles of immunosuppressive microenvironment in the Lauren intestinal-type gastric adenocarcinoma. Selective JAK2 pathway inhibition enhances anti-leukemic functionality in CD19 CAR-T cells. SUMO modified ETV1 promotes M2-polarized tumor-associated macrophage infiltration and cancer progression by facilitating CCL2 transcription in esophageal squamous cell carcinoma cells. ANKRD22 participates in the proinflammatory activities of macrophages in the colon cancer tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1