Win Lwin Thuya, Yang Cao, Paul Chi-Lui Ho, Andrea Li-Ann Wong, Lingzhi Wang, Jianbiao Zhou, Christophe Nicot, Boon Cher Goh
{"title":"Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy.","authors":"Win Lwin Thuya, Yang Cao, Paul Chi-Lui Ho, Andrea Li-Ann Wong, Lingzhi Wang, Jianbiao Zhou, Christophe Nicot, Boon Cher Goh","doi":"10.1016/j.cytogfr.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cytogfr.2025.01.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.
期刊介绍:
Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews.
We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine.
By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.