Jiawei Han , Zhimin Yue , Wen Sun , Weitao Fang , Yunran Zhang , Xiaoqian Liu , Jue Wang , Jiaxin Chen
{"title":"Design of indomethacin novel small molecule hydrogels for concomitant release and permeability increases","authors":"Jiawei Han , Zhimin Yue , Wen Sun , Weitao Fang , Yunran Zhang , Xiaoqian Liu , Jue Wang , Jiaxin Chen","doi":"10.1016/j.ijpharm.2025.125286","DOIUrl":null,"url":null,"abstract":"<div><div>With the expansion of gel research, organic small molecule gels are beginning to gain attention. Whether the small-molecule gel approach can be a new formulation strategy of solubilization and permeation promotion for poorly soluble drugs needs to be explored in this study. The model ingredient indomethacin (IND) as a nonsteroidal anti-flammatory drug shows limited therapeutic application mainly due to its low water solubility. Herein, the IND small molecule hydrogel was design to co-formed with a small molecule ligand by integrating theory-model-experiment techniques. Then, the formed IND small molecule hydrogels (i.e., IND-MEG hydrogel and IND-ARG hydrogel) with meglumine (MEG) or arginine (ARG) appeared typical 3-D network with good rheology. In comparison to crystalline IND, the solubilities of IND-MEG hydrogel and IND-ARG hydrogel exhibited 506.71-fold and 479.63-fold improvements, respectively. Meanwhile, both IND hydrogels performed significantly enhanced release rate and degree, and maintained supersaturation for a long time arising from the complexation reaction of IND and ligand, which was revealed by phase solubility and fluorescence quenching studies. Furthermore, the designed IND hydrogels significantly promoted IND membrane permeability compared to the commercial IND hydrogel, and enhanced the development potential of novel IND hydrogels for oral and transdermal applications. Therefore, this study provides a new formulation technique to increase the solubility/release and permeability of poorly water-soluble drugs by designing their small molecule hydrogel systems.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125286"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037851732500122X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
With the expansion of gel research, organic small molecule gels are beginning to gain attention. Whether the small-molecule gel approach can be a new formulation strategy of solubilization and permeation promotion for poorly soluble drugs needs to be explored in this study. The model ingredient indomethacin (IND) as a nonsteroidal anti-flammatory drug shows limited therapeutic application mainly due to its low water solubility. Herein, the IND small molecule hydrogel was design to co-formed with a small molecule ligand by integrating theory-model-experiment techniques. Then, the formed IND small molecule hydrogels (i.e., IND-MEG hydrogel and IND-ARG hydrogel) with meglumine (MEG) or arginine (ARG) appeared typical 3-D network with good rheology. In comparison to crystalline IND, the solubilities of IND-MEG hydrogel and IND-ARG hydrogel exhibited 506.71-fold and 479.63-fold improvements, respectively. Meanwhile, both IND hydrogels performed significantly enhanced release rate and degree, and maintained supersaturation for a long time arising from the complexation reaction of IND and ligand, which was revealed by phase solubility and fluorescence quenching studies. Furthermore, the designed IND hydrogels significantly promoted IND membrane permeability compared to the commercial IND hydrogel, and enhanced the development potential of novel IND hydrogels for oral and transdermal applications. Therefore, this study provides a new formulation technique to increase the solubility/release and permeability of poorly water-soluble drugs by designing their small molecule hydrogel systems.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.