Intra-rater reliability and validity of neuro-mobinavigation: A mobile app and laser-guided system of motor HotSpot localization

IF 2.7 4区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Neuroscience Methods Pub Date : 2025-01-30 DOI:10.1016/j.jneumeth.2025.110374
Hussein Youssef , Ali Emre Öge , Koen Cuypers , Atay Vural
{"title":"Intra-rater reliability and validity of neuro-mobinavigation: A mobile app and laser-guided system of motor HotSpot localization","authors":"Hussein Youssef ,&nbsp;Ali Emre Öge ,&nbsp;Koen Cuypers ,&nbsp;Atay Vural","doi":"10.1016/j.jneumeth.2025.110374","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Optimal transcranial magnetic stimulation (TMS) efficacy depends on precise coil placement and orientation, as even minor deviations can significantly change the excitation evoked when stimulating the primary motor cortex (M1). To compare the intra-rater reliability of a novel method for consistent TMS coil orientation over a predetermined hotspot in M1, and to benchmark its accuracy against non-navigated method.</div></div><div><h3>New method</h3><div>A three-step method was employed. First, a laser-guided-system stabilized head position. Second, a mobile-app monitored coil tilt and orientation. Finally, coil position was marked on participant's head cap for visual reference for both methods. Twenty-nine healthy-participants underwent six TMS blocks of 20 pulses each. Six experimental blocks, alternating between non-navigated-TMS and Neuro-Mobinavigated-TMS, to investigate the parameters of motor evoked potential (MEP). The experimental blocks were quasi-randomized with a five-minute interval.</div></div><div><h3>Results and comparison with existing method(s)</h3><div>The novel method demonstrated excellent intra-rater reliability (ICC = 0.95, 95 % CI: 0.90–0.97) compared to moderate intra-rater reliability of the non-navigated TMS (ICC = 0.73, 95 % CI: 0.57–0.85) for MEP peak amplitude. Repeated measures ANOVA for novel-method showed consistent peak amplitude across three blocks (p = 0.078), non-navigated TMS exhibited significant variations (p &lt; 0.0001). Wilcoxon signed rank test revealed significantly higher mean peak amplitudes for the novel method (1.02 ± 0.74) compared to non-navigated TMS (0.78 ± 0.61) (p &lt; 0.001), small effect size (r = 0.35).</div></div><div><h3>Conclusions</h3><div>Neuro-Mobinavigation is superior to non-navigated method and provides a reliable and cost-effective alternative for MEP studies where gold standard neuronavigation is not available.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"416 ","pages":"Article 110374"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000159","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Optimal transcranial magnetic stimulation (TMS) efficacy depends on precise coil placement and orientation, as even minor deviations can significantly change the excitation evoked when stimulating the primary motor cortex (M1). To compare the intra-rater reliability of a novel method for consistent TMS coil orientation over a predetermined hotspot in M1, and to benchmark its accuracy against non-navigated method.

New method

A three-step method was employed. First, a laser-guided-system stabilized head position. Second, a mobile-app monitored coil tilt and orientation. Finally, coil position was marked on participant's head cap for visual reference for both methods. Twenty-nine healthy-participants underwent six TMS blocks of 20 pulses each. Six experimental blocks, alternating between non-navigated-TMS and Neuro-Mobinavigated-TMS, to investigate the parameters of motor evoked potential (MEP). The experimental blocks were quasi-randomized with a five-minute interval.

Results and comparison with existing method(s)

The novel method demonstrated excellent intra-rater reliability (ICC = 0.95, 95 % CI: 0.90–0.97) compared to moderate intra-rater reliability of the non-navigated TMS (ICC = 0.73, 95 % CI: 0.57–0.85) for MEP peak amplitude. Repeated measures ANOVA for novel-method showed consistent peak amplitude across three blocks (p = 0.078), non-navigated TMS exhibited significant variations (p < 0.0001). Wilcoxon signed rank test revealed significantly higher mean peak amplitudes for the novel method (1.02 ± 0.74) compared to non-navigated TMS (0.78 ± 0.61) (p < 0.001), small effect size (r = 0.35).

Conclusions

Neuro-Mobinavigation is superior to non-navigated method and provides a reliable and cost-effective alternative for MEP studies where gold standard neuronavigation is not available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience Methods
Journal of Neuroscience Methods 医学-神经科学
CiteScore
7.10
自引率
3.30%
发文量
226
审稿时长
52 days
期刊介绍: The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.
期刊最新文献
Assessment of voluntary drug and alcohol intake in Drosophila melanogaster using a modified one-tube capillary feeding assay Optimization of permeabilized brain tissue preparation to improve the analysis of mitochondrial oxidative capacities in specific subregions of the rat brain Discrete variational autoencoders BERT model-based transcranial focused ultrasound for Alzheimer's disease detection EEG-based fatigue state evaluation by combining complex network and frequency-spatial features Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1